SciELO - Scientific Electronic Library Online

 
vol.8 número2Perenidade da Aretê como horizonte apelativo da Paideia. Sobre a excelência em educação índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Portuguesa de Ciências do Desporto

versión impresa ISSN 1645-0523

Rev. Port. Cien. Desp. v.8 n.2 Porto ago. 2008

 

Inactivity-induced skeletal muscle atrophy: a brief review

 

Scott K. Powers

Andreas N. Kavazis

Department of Applied Physiology and Kinesiology

University of Florida, Gainesville, Florida, USA

 

Abstract

Skeletal muscle is an adaptable tissue that responds rapidly to both increased contractile activity and inactivity. For example, lengthy periods of skeletal muscle disuse (e.g., bed rest) result in a decline of muscle protein and muscular strength. Our understanding of the processes that contribute to disuse muscle atrophy has expanded markedly during the past two decades and this review will provide an overview of the mechanisms responsible for disuse-mediated muscle atrophy. The first segment of this review will outline the experimental models commonly used to investigate disuse muscle atrophy. The second section will discuss our current understanding of muscle proteases whereas the final sector will identify the role that reactive oxygen species play in inactivity-induced muscle atrophy. 

Key-words: redox, oxidants, antioxidants, proteasome, calpain, caspase-3, reactive oxygen species

 

RESUMO

Atrofia do músculo esquelético induzida pela inactividade: uma breve revisão

O músculo esquelético é um tecido adaptável respondendo quer ao aumento da actividade contráctil, quer à inactividade. Por exemplo, períodos prolongados de desuso resultam no declínio das proteínas e da força muscular. O entendimento acerca dos processos que contribuem para a atrofia muscular induzida pelo desuso aumentou notavelmente nas duas últimas décadas e a presente revisão providencia uma síntese dos mecanismos responsáveis pela atrofia muscular esquelética mediada pelo desuso. Numa primeira parte, a presente revisão foca-se nos modelos experimentais comummente usados na investigação da atrofia muscular esquelética induzida pelo desuso. Na segunda parte, discute-se o entendimento actual das próteases musculares enquanto na parte final identifica-se o papel das espécies reactivas de oxigénio na atrofia do músculo esquelético induzida pela inactividade.

Palavras-chave: redox, oxidantes, anti-oxidantes, proteasoma, calpaína, caspase-3, espécies reactivas de oxigénio

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

References

1. Booth FW (1982). Effect of limb immobilization on skeletal muscle. J Appl Physiol 52: 1113-1118        [ Links ]

2. Booth FW, Criswell DS (1997). Molecular events underlying skeletal muscle atrophy and the development of effective countermeasures. Int J Sports Med 18 (Suppl 4): S265-269

3. Thomason DB, Biggs RB, Booth FW (1989). Protein metabolism and beta-myosin heavy-chain mRNA in unweighted soleus muscle. Am J Physiol 257: R300-305

4. Booth FW, Seider MJ (1979). Early change in skeletal muscle protein synthesis after limb immobilization of rats. J Appl Physiol 47: 974-977

5. Hasselgren PO, Wray C, Mammen J (2002). Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem Biophys Res Commun 290: 1-10

6. Purintrapiban J, Wang M, Forsberg NE (2003). Degradation of sarcomeric and cytoskeletal proteins in cultured skeletal muscle cells. Comp Biochem Physiol B Biochem Mol Biol 136: 393-401

7. Furuno K, Goldberg AL (1986). The activation of protein degradation in muscle by Ca2+ or muscle injury does not involve a lysosomal mechanism. Biochem J 237: 859-864

8. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458-471

9. Ikemoto M, Nikawa T, Takeda S, Watanabe C, Kitano T, Baldwin KM, Izumi R, Nonaka I, Towatari T, Teshima S, Rokutan K, Kishi K (2001). Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway. Faseb J 15: 1279-1281

10. Powers SK, Kavazis AN, McClung JM (2007). Oxidative stress and disuse muscle atrophy. J Appl Physiol 102: 2389-2397

11. Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, Price SR, Mitch WE (2004). Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113: 115-123

12. McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiura T, Powers SK (2007). Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 175: 150-159

13. Tidball JG, Spencer MJ (2002). Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 545: 819-828

14. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003). The calpain system. Physiol Rev 83: 731-801

15. Wray CJ, Sun X, Gang GI, Hasselgren PO (2002). Dantrolene downregulates the gene expression and activity of the ubiquitin-proteasome proteolytic pathway in septic skeletal muscle. J Surg Res 104: 82-87

16. Goll DE, Neti G, Mares SW, Thompson VF (2008). Myofibrillar protein turnover: the proteasome and the calpains. J Anim Sci 86(14 Suppl):E19-35

17. Koh TJ, Tidball JG (2000). Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells. Am J Physiol Cell Physiol 279: C806-812

18. Kourie JI (1998). Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol 275: C1-24

19. Primeau AJ, Adhihetty PJ, Hood DA (2002). Apoptosis in heart and skeletal muscle. Can J Appl Physiol 27: 349-395

20. Dupont-Versteegden EE (2005). Apoptosis in muscle atrophy: relevance to sarcopenia. Exp Gerontol 40: 473-481

21. Chen M, Won DJ, Krajewski S, Gottlieb RA (2002). Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 277: 29181-29186

22. Leeuwenburgh C (2003). Role of apoptosis in sarcopenia. J Gerontol A Biol Sci Med Sci 58: 999-1001

23. Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA, Talanian, R. V., Keegan, M., Herzog, L., and Allen, H. (1998) Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356: 187-196

24. Grune T, Davies KJ (2003). The proteasomal system and HNE-modified proteins. Mol Aspects Med 24: 195-204

25. Grune T, Merker K, Sandig G, Davies KJ (2003). Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305: 709-718

26. DeMartino GN, Ordway GA (1998). Ubiquitin-proteasome pathway of intracellular protein degradation: implications for muscle atrophy during unloading. Exerc Sport Sci Rev 26: 219-252

27. Li YP, Chen Y, Li AS, Reid MB (2003). Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 285: C806-812

28. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704-1708

29. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001). Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98: 14440-14445

30. Kondo H (2000). Oxidative stress in skeletal muscle atrophy. In Handbook of Oxidants and Antioxidants in Exercise (Chandan Sen, L. P., and Osmo Hanninen, ed) pp. 631-653, Elsevier, Amsterdam

31. Reid MB (2001). Invited Review: redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol 90: 724-731

32. Lawler JM, Song W, Demaree SR (2003). Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35: 9-16

33. Kondo H, Miura M, Itokawa Y (1993). Antioxidant enzyme systems in skeletal muscle atrophied by immobilization. Pflugers Arch 422: 404-406

34. Kondo H, Miura M, Kodama J, Ahmed SM, Itokawa Y (1992). Role of iron in oxidative stress in skeletal muscle atrophied by immobilization. Pflugers Arch 421: 295-297

35. Kondo H, Miura M, Nakagaki I, Sasaki S, Itokawa Y (1992). Trace element movement and oxidative stress in skeletal muscle atrophied by immobilization. Am J Physiol 262: E583-590

36. Kondo H, Nakagaki I, Sasaki S, Hori S, Itokawa Y (1993). Mechanism of oxidative stress in skeletal muscle atrophied by immobilization. Am J Physiol 265: E839-844

37. Kondo H, Nishino K, Itokawa Y (1994). Hydroxyl radical generation in skeletal muscle atrophied by immobilization. FEBS Lett 349: 169-172

38. Bar-Shai M, Carmeli E, Ljubuncic P, Reznick AZ (2008). Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation. Free Radic Biol Med 44: 202-214

39. Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, Belcastro A, Powers SK (2002). Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 166, 1369-1374

40. Zergeroglu MA, McKenzie MJ, Shanely RA, Van Gammeren D, DeRuisseau KC, Powers SK (2003). Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol 95: 1116-1124

41. Appell H-J, Duarte JA, Soares JM (1997). Supplementation of vitamin E may attenuate skeletal muscle immobilization atrophy. Int J Sports Med 18: 157-160

42. Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, Deruisseau KC, Deering M, Yimlamai T, Powers SK (2004). Trolox attenuates mechanical ventilation-induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 170(11):1179-1184

43. McClung JM, Kavazis AN, Whidden MA, DeRuisseau KC, Falk DJ, Criswell DS, Powers SK (2007). Antioxidant administration attenuates mechanical ventilation-induced rat diaphragm muscle atrophy independent of protein kinase B (PKB Akt) signalling. J Physiol 585: 203-215

44. Koesterer TJ, Dodd SL, Powers S. (2002). Increased antioxidant capacity does not attenuate muscle atrophy caused by unweighting. J Appl Physiol 93: 1959-1965

45. Siems W, Capuozzo E, Lucano A, Salerno C, Crifo C (2003). High sensitivity of plasma membrane ion transport ATPases from human neutrophils towards 4-hydroxy-2,3-trans-nonenal. Life Sci 73: 2583-2590

46. Moylan JS, Reid MB (2007). Oxidative stress, chronic disease, and muscle wasting. Muscle & nerve 35: 411-429

47. Patel J, McLeod LE, Vries RG, Flynn A, Wang X, Proud CG (2002). Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem 269: 3076-3085

48. Alirezaei M, Marin P, Nairn AC, Glowinski J, Premont J (2001). Inhibition of protein synthesis in cortical neurons during exposure to hydrogen peroxide. J Neurochem 76: 1080-1088

49. Pham FH, Sugden PH, Clerk A (2000). Regulation of protein kinase B and 4E-BP1 by oxidative stress in cardiac myocytes. Circ Res 86: 1252-1258

50. Allen DL, Linderman JK, Roy RR, Bigbee AJ, Grindeland RE, Mukku V, Edgerton VR (1997). Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 273: C579-587

51. Sandri M (2002). Apoptotic signaling in skeletal muscle fibers during atrophy. Curr Opin Clin Nutr Metab Care 5: 249-253

 

Corresponding author

Scott K. Powers

Department of Applied Physiology and Kinesiology

PO Box 118225

University of Florida

Gainesville, Florida 32611