SciELO - Scientific Electronic Library Online

 
vol.8 número2Independência efetora e prática moderada com a mão esquerda em destrímanosA fadiga muscular diminui a sensação de posição do ombro em andebolistas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Revista Portuguesa de Ciências do Desporto

versión impresa ISSN 1645-0523

Rev. Port. Cien. Desp. v.8 n.2 Porto ago. 2008

 

Modelo para estimativa de força e torque dos músculos rotadores externos do ombro no plano transverso

 

Marcelo P. Castro

Felipe O. Marques

Juliana M. Costa

Joelly M. Toledo

Roberto C. Krug

Daniel C. Ribeiro

Jefferson F. Loss

Universidade Federal do Rio Grande do Sul, Escola Superior de Educação Física, Porto Alegre, Brasil

 

Resumo

Estimar a força dos músculos do ombro e compreender o quanto cada músculo contribui para produção do torque em determinado movimento articular torna-se indispensável para a compreensão do movimento humano, bem como para o planejamento da reabilitação de pacientes com disfunções no ombro. Neste sentido, o presente estudo tem como principal objetivo estimar a força muscular e analisar a contribuição dos músculos Infra-espinhoso, Redondo Menor, Supra-espinhoso, Deltóide Posterior e Deltóide Médio no torque de rotação externa dinâmico do ombro no plano transverso. Para isso, um modelo de otimização gerado no software MATLABâ 7.0 (MathWork Inc, Massachusetts – USA), capaz de estimar a produção de força e torque de cada um dos músculos rotadores externos do ombro foi utilizado.Os músculos Infra-espinhoso e Redondo Menor apresentaram um pico de torque de 22Nm em 20º e 6Nm em 28º, respectivamente, quando o ombro encontrava-se em rotação interna. A magnitude máxima de força alcançada por estes músculos foi de 996N para o Infraespinhoso e 306N para o Redondo Menor. Os músculos Supra-espinhoso, Deltóide Posterior e Deltóide Médio praticamente não produziram torque e obtiveram magnitudes pequenas de força. Estes resultados apontam que os músculos Infra-espinhoso e Redondo Menor são preferencialmente recrutados para o gesto de rotação externa do ombro.

Palavras-chave: ombro, torque muscular, força muscular e modelo de otimização.

 

Abstract

Model for force and moment prediction of shoulder external rotation muscles in the transverse plane

Estimate the shoulder muscles forces and understand how much each muscle the moment production during joint movement is indispensable for the knowledge of the human movement, as well as, for the rehabilitation planning of patients with shoulder dysfunction. For this reason, the goal of the present study is to estimate the muscle force and to analyze the contribution of the following muscles: Infraspinatus, Teres Minor, Supraspinatus, Deltoideus Posterior and Deltoideus Medialis during dynamic external rotation of the shoulder in the transverse plane. So, an optimization model structured in the software MATLAB 7.0 (MathWork Inc., Massachusetts - the USA) was used to estimate the force and moment production of each the shoulder external rotators muscles. The muscles Infraspinatus and Teres Minor reached the following peak moment, respectively: 22 Nm (20º of internal rotation) and 6 Nm (28º of internal rotation). The force magnitudes reached by these muscles were 996 N for the Infraspinatus and 306 N for the Teres Minor, both at 31° of internal rotation. The muscles Supraspinatus, Deltoideus Posterior and Deltoideus Medialis presented low magnitudes for external rotation moment and force. These results suggested Infraspitatus and Teres Minor muscles are preferentially recruited during external rotation of the shoulder.

Key-words: shoulder, moment, muscle force and optimization model

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

REFERÊNCIAS

1. Abbott BC, Aubert XM (1952). The force exerted by active striated muscle during and after change of length. J Physiol 117(1): 77-86.        [ Links ]

2. An K, Kaufmn K, Eys C (1995). Estimation of muscle and joint forces. In: Three-Dimensional Analysis of Human Movement, Champaign: Human Kinetics, 201-214.

3. Ballantyne BT, O’Hare SJ, Paschall J, Pavia-Smith MM, Pitz AM, Gillon JF., Soderberg GL (1993). Electromyographic activity of selected shoulder muscles in commonly used therapeutic exercises. Phys Ther 73(10): 668-677; discussion 677-682.

4. Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996). Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495 ( Pt 2): 573-586.

5. Buchanan TS (1995). Evidence that maximum muscle stress is not a constant: differences in specific tension in elbow flexors and extensors. Med Eng Phys, 17(7): 529-536.

6. Chang YW, Hughes RE, Su FC, Itoi E, An KN (2000). Prediction of muscle force involved in shoulder internal rotation. J Shoulder Elbow Surg 9(3):188-95.

7. Corr DT, Herzog W (2005). Force recovery after activated shortening in whole skeletal muscle: transient and steadystate aspects of force depression. J Appl Physiol 99(1): 252- 260.

8. David G, Magarey ME, Jones MA, Dvir Z, Turker KS, Sharpe M (2000). EMG and strength correlates of selected shoulder muscles during rotations of the glenohumeral joint. Clin Biomech (Bristol, Avon) 15(2): 95-102.

9. De Ruiter CJ, De Haan A (2000). Temperature effect on the force/velocity relationship of the fresh and fatigued human adductor pollicis muscle. Pflugers Arch 440(1): 163- 170.

10. De Ruiter CJ, De Haan A (2003). Shortening-induced depression of voluntary force in unfatigued and fatigued human adductor pollicis muscle. J Appl Physiol 94(1): 69- 74.

11. De Ruiter CJ, De Haan A, Jones DA, Sargeant AJ (1998). Shortening-induced force depression in human adductor pollicis muscle. J Physiol 507 ( Pt 2): 583-591.

12. De Wilde LF, Audenaert EA, Berghs BM (2004). Shoulder prostheses treating cuff tear arthropathy: a comparative biomechanical study. J Orthop Res 22(6): 1222-1230.

13. Edman KA (1975). Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog. J Physiol 246(1): 255-275.

14. Enoka RM (2000). Bases Neuro Mecânicas da Cinesiologia, 2ª Ed., Editora Manole Ltda, São Paulo.

15. Favre P, Sheikh R, Fucentese SF, Jacob HA (2005). An algorithm for estimation of shoulder muscle forces for clinical use. Clin Biomech (Bristol, Avon) 20(8): 822-833.

16. Fenn and Marsh. (1935). Muscular Force at Different Speeds of Shortening. Department of Physiology - The University of Rochester School of Medicine - NY.

17. Glasoe WM, Fisher CJ, Murthy D (2004). Treatment protocol for an acute large rotator cuff repair. Physiotherapy 90: 217–220.

18. Gordon AM, Huxley AF, Julian FJ (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1): 170-192.

19. Guyton AC, Hall JE (2002). Tratado de fisiologia médica, 10ª Ed., Guanabara Koogan, Rio de Janeiro.

20. Herzog W, Leonard TR (1997). Depression of cat soleusforces following isokinetic shortening. J Biomech 30(9): 865-872.

21. Herzog W, Leonard TR, Wu JZ (2000). “The relationship between force depression following shortening and mechanical work in skeletal muscle.” J Biomech 33(6): 659-668.

22. Herzog W, Schachar R, Leonard TR (2003). Characterization of the passive component of force enhancement following active stretching of skeletal muscle. J Exp Biol 206(Pt 20): 3635-3643.

23. Hintermeister RA, Lange GW, Schultheis JM, Bey MJ, Hawkins RJ (1998). Electromyographic activity and applied load during shoulder rehabilitation exercises using elastic resistance. Am J Sports Med 26(2): 210-220.

24. Hughes RE, An KN (1996). Force analysis of rotator cuff muscles. Clin Orthop Relat Res (330): 75-83.

25. Hughes RE, Johnson ME, O’Driscoll SW, An KN (1999). Age-related changes in normal isometric shoulder strength. Am J Sports Med 27(5): 651-657.

26. Jobe FW, Moynes DR, Brewster CE (1987). Rehabilitation of shoulder joint instabilities. Orthop Clin North Am 18(3): 473-482.

27. Kapandje IA (2000). Fisiologia Articular 5ª Ed., Panamericana, São Paulo.

28. Karlsson D, Peterson B (1992). Towards a model for force predictions in the human shoulder. J Biomech 25(2): 189- 199.

29. Kashima T, Isurugi Y, Shima M (2000). Analysis of a muscular control system in human movements. Biol Cybern 82(2): 123-131.

30. Kelly BT, Backus SI, Warren RF, Williams RJ (2002). Electromyographic analysis and phase definition of the overhead football throw. Am J Sports Med 30(6): 837-844.

31. Kibler WB, McMullen J, Uhl T (2001). Shoulder rehabilitation strategies, guidelines, and practice. Orthop Clin North Am 32(3): 527-538.

32. Kronberg M, Nemeth G, Brostrom LA (1990). Muscle activity and coordination in the normal shoulder. An electromyographic study. Clin Orthop Relat Res (257): 76-85.

33. Kuechle DK, Newman SR, Itoi E, Niebur GL, Morrey BF, An KN (2000). The relevance of the moment arm of shoulder muscles with respect to axial rotation of the glenohumeral joint in four positions. Clin Biomech (Bristol, Avon) 15(5): 322-329.

34. Langenderfer JE, Carpenter JE, Johnson ME, An KN, Hughes RE (2006). A probabilistic model of glenohumeral external rotation strength for healthy normals and rotator cuff tear cases. Ann Biomed Eng 34(3): 465-476.

35. Langenderfer JE, Patthanacharoenphon C, Carpenter JE, Hughes RE (2006). Variability in isometric force and moment generating capacity of glenohumeral external rotator muscles. Clin Biomech (Bristol, Avon) 21(7): 701- 709.

36. Laursen B, Jensen BR, Nemeth G, Sjogaard G (1998). A model predicting individual shoulder muscle forces based on relationship between electromyographic and 3D external forces in static position. J Biomech 31(8): 731-739.

37. Liu J, Hughes RE, Smutz WP, Niebur G, Nan-An K (1997). Roles of deltoid and rotator cuff muscles in shoulder elevation. Clin Biomech (Bristol, Avon) 12(1): 32-38.

38. Ludewig PM, Cook TM (2000). Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther 80(3): 276- 291.

39. MacIntosh BR, Herzog W, Suter E, Wiley JP, Sokolosky J (1993). Human skeletal muscle fibre types and force: velocity properties. Eur J Appl Physiol Occup Physiol 67(6): 499- 506.

40. Mantone JK, Burkhead WZ Jr., Noonan J Jr. (2000). Nonoperative treatment of rotator cuff tears. Orthop Clin North Am 31(2): 295-311.

41. Marechal G, Plaghki L (1979). The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity. J Gen Physiol 73(4): 453-467.

42. Morgan, D. L., Whitehead, N. P., Wise, A. K., Gregory, J. E., and Proske, U. (2000). “Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle.” J Physiol, 522 Pt 3, 503-513.

43. Murray WM, Delp SL, Buchanan TS (1995). Variation of muscle moment arms with elbow and forearm position. J Biomech 28(5): 513-525.

44. Nieminen H, Niemi J, Takala EP, Viikari-Juntura E (1995). Load-sharing patterns in the shoulder during isometric flexion tasks. J Biomech 28(5): 555-566.

45. Otis JC, Jiang CC, Wickiewicz TL, Peterson MG, Warren RF, Santner TJ (1994). Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation. J Bone Joint Surg Am 76(5): 667-676.

46. Rassier DE, Herzog W (2004). Considerations on the history dependence of muscle contraction. J Appl Physiol 96(2): 419-427.

47. Rassier DE, Herzog W, Pollack GH (2003). Dynamics of individual sarcomeres during and after stretch in activated single myofibrils. Proc Biol Sci 270(1525): 1735-1740.

48. Rassier DE, MacIntosh BR, Herzog W (1999). Length dependence of active force production in skeletal muscle. J Appl Physiol 86(5): 1445-1457.

49. Rubin BD, Kibler WB (2002). Fundamental principles of shoulder rehabilitation: conservative to postoperative management. Arthroscopy 18(9 Suppl 2): 29-39.

50. Tytherleigh-Strong G, Hirahara A, Miniaci A (2001). Rotator cuff disease. Curr Opin Rheumatol 13(2): 135-145.

51. Vecchia ED, Duarte M, Amadio AC (1997). Proposta de um modelo metodológico para determinação de forças internas do aparelho locomotor humano. Anais do VII Congresso Brasileiro de Biomecânica, Campinas, 189-194.

52. Wilmore J, Costill D (2001). Fisiologia do Esporte e do Exercício, Manole, São Paulo.

53. Wood JE, Meek SG, Jacobsen SC (1989). Quantitation of human shoulder anatomy for prosthetic arm control—I. Surface modelling. J Biomech 22(3): 273-292.

 

CORRESPONDÊNCIA

Marcelo P. Castro

Rua Botafogo 1212/501

CEP: 90150052

Porto Alegre – RS, Brasil.

E-mail: marcelocastro_fisio@hotmail.com