SciELO - Scientific Electronic Library Online

 
vol.5 número1Tempo de mudançasImpulsão dinâmica da transposição da barreira: Alterações na capacidade de produção mecânica do complexo músculo-tendinoso provocadas pela instalação da fadiga índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Portuguesa de Ciências do Desporto

versão impressa ISSN 1645-0523

Rev. Port. Cien. Desp. v.5 n.1 Porto jan. 2005

 

Utilização de métodos invasivo e não invasivo na predição das performances aeróbia e anaeróbia em nadadores de nível nacional.

 

Marcelo Papoti1,2*

Alessandro M. Zagatto2,3

Olga C. Mendes1

Claudio A. Gobatto2

 

1 Faculdades Integradas de Bauru, SP, Brasil.

2Laboratório de Biodinâmica, UNESP Rio Claro, SP, Brasil.

3Universidade Federal do Mato Grosso do Sul, MS, Brasil.

 

RESUMO

O objetivo do presente estudo foi comparar a velocidade crítica (VC) com o limiar anaeróbio (LAN) e verificar as relações dessas variáveis e da capacidade de nado anaeróbio (CTA) com o desempenho de nadadores nas distâncias de 15m, 25m, 50m, 100m, 200m e 400m nado crawl. Participaram voluntariamente do estudo 8 nadadores de nível nacional, que realizaram 3 esforços progressivos (85%, 90% e 100%) de 400m nado crawl para determinação do LAN, bem como esforços máximos nas distâncias de 15m, 25m, 50m, 100m, 200m e 400m em estilo crawl. Os tempos obtidos nas distâncias de 200m e 400m foram submetidos ao procedimento de regressão linear para determinação da VC (coeficiente angular) e CTA (coeficiente linear). A VC (1,38 ± 0,07) não foi significativamente diferente (p<0,05) do LAN (1,37 ± 0,05) e apresentaram correlações significativas com a performance de 400m nado crawl (p<0,05), enquanto que a CTA não se correlacionou significativamente com nenhuma das performances de nado. Desse modo pode-se concluir que a VC é um parâmetro confiável na avaliação da capacidade aeróbia e na predição da performance de 400m nado crawl. No entanto, a CTA obtida pelo intercepto-y não foi um bom preditor da performance dos nadadores nas distâncias entre 15m a 400m.

Palavras-chave: natação, capacidade anaeróbia, velocidade crítica, performance.

 

ABSTRACT

Use of invasive and non-invasive protocol tests on aerobic and anaerobic performances prediction in Brazilian swimmers.

The purpose of this study was to compare the critical velocity (VC) with the anaerobic threshold (LAN) and verify the relationship among VC and LAN with anaerobic swimming capacity (CTA) with the swimmer’s performance in the 15m, 25m, 50m, 100m, 200m, 400m distances in crawl swimming. Eight national level swimmers were volunteers in the present study, and performed 3 progressive efforts of 400m crawl swimming (85%, 90% and 100%) for LAN determination. They also performed the maximum effort in the 15m, 25m, 50m, 100m, 200m and 400m distances in crawl style. The scores resulted from the 200m and 400m distances were submitted to the linear regression procedure for VC determination (angular coefficient) and CTA (linear coefficient). The VC (1.38 ± 0.07) was not significantly different from the LAN (1.37 ± 0.05) and presented significant correlations with the 400m crawl swimming performance (p<0.05), while the CTA did not correlate significantly with any of these swimming performances. In this way, it is possible to conclude that the VC is a trustful reliable indicator for the evaluation of the aerobic capacity in swimming. However, the CTA resulted from y-intercept was not a good predictor of the swimmer’s performance in the distances from 15m to 400m crawl swimming.

Key Words: swimming, anaerobic capacity, critical velocity, performance.

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

REFERÊNCIAS

1. Bishop D, Jenkins DG. (1996). The influence of Resistance Training on the Critical Power Function & Time to Fatigue at Critical Power. The Australian Journal of Science and Medicine in Sport 28: 101-105.        [ Links ]

2. Bulbulian R, Wilcox AR, Darabos BI. (1986). Anaerobic contribution to distance running performance of trained cross-country athletes. Medicine and Science in Sports and Exercise 18: 107-113.         [ Links ]

3. Costill DI, Reifield F, Kirwan J, Thomas R. (1986). A computer based system for the measurement of force and power furing front crawl swimming. Journal of Swimming Research 2: 16-19.        [ Links ]

4. Dekerle J, Sidney M, Hespel, MJ, Pelayo P. (2002). Validity and Reliability of Critical Speed, Critical Stroke Rate, and Anaerobic Capacity in relation to Front Crawl Swimming Performances. International Journal of Sports Medicine 23: 93-98.         [ Links ]

5. Deminice R, Prado JRMV, Papoti M, Zagatto A. (2003). Utilização de métodos não-invasivos como indicador da capacidade aeróbia e da performance em natação competitiva. Revista Brasileira de Ciência e Movimento (Suplemento), 130.        [ Links ]

6. Fry RW, Morton AR, Garcia-Webb P, Crawford GPM, Keast D. (1994). Psychological and immunological correlates of acute overtraining. British Journal of Sports Medicine 28: 241–246.         [ Links ]

7. Gaesser GA e Wilson IA. (1988). Effects of continuous and interval training on the parameters of the power-endurance time relationship for high-intensity exercise. International Journal of Sports Medicine 9: 417–21.        [ Links ]

8. Green S, Dawson BT, Goodman, C, Carey MF. (1994). Y-intercept of the maximal work-duration relationship and anaerobic capacity in cyclists. European Journal of Applied Physiology 69: 550-556.        [ Links ]

9. Green, S. (1995). Measurement of Anaerobic Work Capacities in Humans. Sports  Medicine 19: 32-42.        [ Links ]

10. Guglielmo IGA, Denadai BS. (1999). Correlação do teste de Wingate de braço com a capacidade de trabalho anaeróbio determinada através do conceito de velocidade crítica na natação. Motriz (Suplemento) 5: 92.        [ Links ]

11. Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W. (1985). Justification of the 4mmol/l lactate threshold. International Journal Sports Medicine 6:117-30.        [ Links ]

12. Hill DW, Jimmy C, Smith C. (1994).  A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept. The Journal of Spots Medicine and Physical Fitness 34:23-37.        [ Links ]

13. Hooper SL, Mackinnon IT, Ginn EM. (1998). Effects of three tapering techniques on the performances, forces and psychometric measures of competitive swimmers. European Journal of Applied Physiology 78: 258-263.        [ Links ]

14. Jenkins DG, Quigley BM. (1993). The influence of high-intensity exercise on the Wlim-Tlim relationship. Medicine and Science in Sports and Exercise 25: 275-282.        [ Links ]

15. Jenkins DG, Quigley BM. (1991). The y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics 31: 1413-1419.        [ Links ]

16. Jeukendrup AE, Hesselink MK. (1994). Overtraining - what do lactate curves tell us? British Journal of Sports Medicine 28: 239-240.        [ Links ]

17. Johns, RA, Houmard AJ, Kobe WR, Hortobágyi T, Bruno JN, Wells MJ, Shinebarger HM. (1992). Effects of taper on swim power, stroke distance, and performance. Medicine and Science in Sports and Exercise 24: 1141-1146.        [ Links ]

18. Kiss MAPDM, Fleishmann E, Cordani IK, Kalinovsky F, Costa R, Oliveira FR, Gagliardi JFI. (1995). Validade da velocidade de limiar de lactato de 3,5 mmol/L -1 identificada através de teste em pista de atletismo. Revista Paulista de Educação Fisica 9:16-25.        [ Links ]

19. Kokubun E. (1996). Velocidade crítica como estimador do limiar anaeróbio na natação. Revista Paulista de Educação Física 10: 5-20.        [ Links ]

20. Lehmann M, Baumgart P, Wiesenack C. (1992). Training-overtraining: influence of a defined increase in training volume vs training intensity on performance, catecholamines and some metabolic parameters in experienced middle and long-distance runners. European Journal of Applied Physiology 64: 169-177.        [ Links ]

21. Mader A, Heck HA. (1986). Theory of the metabolic origin of anaerobic threshold. International Journal of Sports Medicine 7: 45-65.        [ Links ]

22. Madsen O, Lohberg M. (1987). The lowdon on lactates. Swimming Technique 24: 21-26.        [ Links ]

23. Maglischo EW, Maglischo EW, Sharp RI, Zier DJ, Katz A. (1984). Tethered and nontethered crawl swimming. Sports Biomechanics 163-176.        [ Links ]

24. Maglischo EW. (1999). Nadando ainda mais rápido. São Paulo-SP: Ed. Manole.        [ Links ]

25. Marinho PC, Andries O Jr. (2001). Avaliação da força propulsora do nadador: validação e reprodutibilidade de uma metodologia específica. Revista Brasileira de Ciência e Movimento (Suplemento) 79.        [ Links ]

26. Monod H, Scherrer J. (1965). The work capacity of a synergic muscular group. Ergonomics 8: 329-337.        [ Links ]

27. Moritani T, Nagata A, DeVries HA,  Muro M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomic 24: 339-350.        [ Links ]

28. Mujika I, Chatard JC, Busso T, Geyssant A, Barale F, Lacoste L. (1995). Effects of Training on Performance in Competitive Swimming. Canadian Journal of Applied Physiology 20: 395-406.        [ Links ]

29. Neufrer PD, Costill D, Fielding RA, Flynn MG, Kirwan JP. (1987). Effects of reduced training on muscular strength and endurance in competitive swimmers. Medicine and Science in Sports and Exercise 19: 486-490.        [ Links ]

30. Olbrecht J, Madsen O, Mader A, Liesen H, Hollmann W. (1985). Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises. International Journal of Sports Medicine 2: 74-77.        [ Links ]

31. Overend TJ, Cunningham DA, Paterson DH, Smith WDF. (1992). Physiological responses of young and eldrey men to prolonged exercise at critical power. European Journal of Applied Physiology 64: 187-93.        [ Links ]

32. Papoti M, Martins LEB, Cunha SA, Freitas Jr PB, Gobatto C. (2002). Effects of taper on swimming force and performance after a 10-wk training program. In Proceedings of the 7thAnnual Congress of the European College of Sport Science, 470.        [ Links ]

33. Papoti M, Martins LEB, Cunha AS, Zagatto AM, Pereira RR, Gobatto CA. (2003). Validade na determinação das capacidades aeróbia e anaeróbia de nadadores. Motriz 9: 56.        [ Links ]

34.Pelayo P, Mujika I, Sidney M, Chatard J. (1996). Blood lactate recovery measurements, training, and performance during a 23-week period of competitive swimming. European Journal of Applied Physiology 74: 107–113.        [ Links ]

35. Pereira RR, Zagatto AM, Papoti M, Gobatto CA. (2002). Validação de dois protocolos para determinação do limiar anaeróbio em natação. Motriz 8: 63-68.        [ Links ]

36. Pyne BD, Lee HE, Swanwick, KM. (2001). Monitoring the lactate threshold in world-ranked swimmers. Medicine and Science in Sports and Exercise 33: 291-297.        [ Links ]

37. Raglin JS, Koceja DM, Stanger JM, Harms CA. (1996). Mood, neuromuscular function, and performance during training in female swimmers. Medicine and Science in Sports and Exercise 28:  372-377.        [ Links ]

38. Sharp RL, Troup JP, Costill DL. (1982). Relationship between power and sprint freestyle swimming. Medicine and Science in Sports and Exercise 14: 53-56.        [ Links ]

39. Sjodin B, Jacobs I. (1981). Onset of blood accumulation and marathon running performance. International Journal Sports Medicine 2:23-6.        [ Links ]

40. Smith DJ, Norris RS, Hogg MJ. (2002). Performance Evaluation of Swimmers: Scientific Tools. Sports Medicine 32: 539-554.        [ Links ]

41. Smith JC. (1998). Effect of oral creatine ingestion on parameters of the work rate-time relationship an time to exhaustion in high-intensity cycling. European Journal of Applied Physiology 77: 360-365.         [ Links ]

42. Snyder AC, Jeukendrup AE, Hesselink MKC, Kuipers H, Foster CA. (1993). A physiological/psychological indicator of over-reaching during intensive training. International Journal of Sports Medicine 14: 29-32.        [ Links ]

43. Soares S, Vilar S, Bernardo C, Campos A, Fernandes R, Vilas-Boas JP. (2003). Using data from the critical velocity regression line for the estimation of anaerobic capacity in infant and adult swimmers. Revista Portuguesa de Ciências do Desporto 3:73-118.        [ Links ]

44. Tokmakidis PS, Léger AL, Pilianidis, C. T.(1998). Failure to obtain a unique threshold on the blood lactate concentration curve during exercise. European Journal Applied Physiology 77: 333-342.         [ Links ]

45. Toussaint HM, Wakayoshi K, Hollander PA, Ogita F. (1998). Simulated front crawl swimming performance related to critical speed and critical power. Medicine and Science in Sports and Exercise 30: 144-151.        [ Links ]

46. Trappe S, Costill D, Thomas R. (2001). Effect of swim taper on whole muscle and single muscle fiber contractile properties. Medicine and Science in Sports and Exercise. 32: 48-56.        [ Links ]

47. Vilas Boas JP, Lamares JP, Fernandes R, Duarte JA. (1997). Relationship between anaerobic threshold and swimming critical speed determined with competition times. In Abstracts book of the FIMS 9th European Congress of Sports Medicine, Porto, 88-91.        [ Links ]

48. Wakayoshi K, Ikuta K, Yoshida T, Udo M, Moritani T, Mutoh Y, Miyashita M. (1992). Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. European Journal of Applied Physiology 64: 153-157.         [ Links ]

49. Wakayoshi K, Yoshida T, Udo M, Harada T, Moritani T, Mutoh Y, Miyashita, M. (1993). Does critical swimming velocity represent exercise intensity at maximal lactate steady state? European Journal of Applied Physiology 66: 90-95.        [ Links ]

 

 

CORRESPONDÊNCIA

Marcelo Papoti*

Laboratório de Biodinâmica, UNESP Rio Claro, SP.

Av. 24 A 15-15, Bela Vista, Rio Claro, SP.

13506-900 Brasil.

papoti@ig.com.br