SciELO - Scientific Electronic Library Online

 
vol.28 número1Some rankings for the Athens Olympic Games using DEA models with a constant input índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Investigação Operacional

versão impressa ISSN 0874-5161

Inv. Op. v.28 n.1 Lisboa jun. 2008

 

Optimal Pricing and Ordering Policies For deteriorating items under progressive trade credit scheme

 

Nita H. Shah 1

Hardik Soni 2

1  Department of Mathematics, Gujarat University, Ahmedabad – 380009, Gujarat.

India.

nita_sha_h@rediffmail.com

 

2 Chimanbhai Patel Post Graduate Institute of Computer Applications,

Ahmedabad – 380051, Gujarat.

India.

Hardik_soni30@yahoo.com

 

                                          

Abstract

In this paper, a mathematical model is developed to formulate optimal pricing and ordering policies when the units in inventory are subject to constant rate of deteriorating and the supplier offers progressive credit periods to settle the account. The concept of progressive credit periods is as follows:

If the retailer settles the outstanding amount by M, the supplier does not charge any interest. If the retailer pays after M but before N (M < N), then the supplier charges the retailer on the un-paid balance at the rate Ic1. If the retailer settles the account after N, then he will have to pay an interest rate of Ic2 (Ic2 > Ic1) on the un-paid balance.

The objective is to maximize the net profit. The decision variables are selling price and ordering quantity. An algorithm is given to find the flow of optimal selling price and ordering policy. A numerical illustration is given to study the effect of offered two credit periods and deterioration on decision variables and the net profit of the retailer.

Keywords: EOQ, Progressive Credit Periods, deterioration, Selling Price, Ordering Policy.

 

 

Title: Optimal Preços e Encomenda Políticas Para deterioração progressiva itens sob regime de comércio de crédito

Resumo

Neste trabalho, um modelo matemático desenvolvido está optimizado para formular políticas de preços e encomendas, quando as unidades do inventário estão sujeitos à taxa constante de deterioração progressiva eo fornecedor oferece crédito períodos de liquidar a conta. O conceito de progressividade de crédito períodos é a seguinte: Se o varejista apurado o montante pendente por M, o fornecedor não cobra qualquer interesse. Se o revendedor paga após M, mas antes de N (M <N), em seguida, o fornecedor cobra o varejista sobre as un-pago à taxa equilíbrio IC1. Se o varejista liquidar a conta depois de N, então ele terá que pagar uma taxa de juro de IC2 (IC2> IC1) sobre o saldo un-pagos. O objetivo é maximizar o lucro líquido. A decisão são variáveis preço de venda e ordenando quantidade. Um algoritmo é determinado a encontrar o fluxo otimizado de preço de venda e ordenação política. A ilustração é dado numérico para estudar o efeito do crédito oferecido dois períodos ea deterioração variáveis e decisão sobre o lucro líquido da varejista.

 

 

Full text only in PDF.

Texto completo apenas disponível em PDF.

 

 

References

Arcelus, F. J., Shah, Nita H. and Srinivasan, G. (2001) Retailer’s response to special sales: Price discount vs. trade credit, OMEGA, Vol 29, No 5, pp. 417 – 428.        [ Links ]

Arcelus, F. J., Shah, Nita H. and Srinivasan, G. (2003) Retailer’s pricing, credit and inventory policies for deteriorating items in response to temporary price / credit incentives, International Journal of Production Economics,Vol  81-82, pp. 153 – 162.

Chapman, C. B. and Ward, S. C. (1988) Inventory control and trade credit – A Further Reply, Journal of Operational Research Society, Vol 39, pp. 219 – 220.

Chu, P., Chung, K. J., and Lan, S. P. (1998) Economic order quantity of deteriorating items under permissible delay in payments, Computers and Operations Research, Vol 25, pp. 817 – 824.

Chung, K. J.; (1998): A theorem on the determination of economic order quantity under conditions of permissible delay in payments, Computers and Operations Research, Vol 25, pp. 49 – 52.

Daellenbach, H. G.; (1986): Inventory control and trade credit, Journal of Operational Research Society, Vol 37, pp. 525 – 528.

Daellenbach, H. G.; (1988):  Inventory control and trade credit – a rejoinder, Journal of Operational Research Society, Vol 39, pp. 218 – 219.

Davis, R. A. and Gaither, N.; (1985): Optimal ordering policies under conditions of extended payment privileges, Management Science, Vol 31, pp. 499 – 509.

Goyal, S. K. and Giri, B. C.; (2001): Recent trends in modeling of deteriorating inventory. European Journal of Operational Research, Vol 134, pp. 1 – 16.

Goyal, S. K.; (1985): Economic order quantity under conditions of permissible delay in payments, Journal of the Operational Research Society, Vol 36, pp. 335 – 338.

Haley, C. W. and Higgins, R. C.; (1973): Inventory policy and trade credit financing, Management Science, Vol 20, pp. 464 – 471.

Hwang, H. and Shinn, S. W.; (1997): Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments, Computers and Operations Research, Vol 24, pp. 539 – 547.

Jamal, A. M., Sarker, B. R. and Wang, S.; (1997): An ordering policy for deteriorating items with allowable shortages and permissible delay in payment, Journal of the Operational Research Society, Vol 48, pp. 826 – 833.

Jamal, A. M. M., Sarker, B. R. and Wang, S.; (2000): Optimal payment time for a retailer under permitted delay of payment by the wholesaler, International Journal of Production Economics, Vol 66, No 1, pp. 59 – 66.

Kingsman, B. G.; (1983): The effect of payment rules on ordering and stockholding in purchasing, Journal of the Operational Research Society, Vol 34, pp. 1085 – 1098.

Mandal, B. N. and Phaujdar, S.; (1989-a): Some EOQ models under permissible delay in payments, International Journal of Management and Systems, Vol 5, No 2,  pp.  99 – 108.

Raafat F.; (1991): Survey of literature on continuously deteriorating inventory model, Journal of the Operational Research Society, Vol 42, pp. 27 – 37.

Shah, Nita H. and Shah, Y. K.; (1992): A probabilistic order level system when delay in payments is permissible, presented at Operational Research Society of India, Convention - 25, India.

Shah, Nita H. and Shah, Y.K.; (2000): Literature survey on inventory model for deteriorating items. Economic Annals (Yugoslavia), XLIV, pp. 221 – 237.

Shah, Nita H.; (1997): Probabilistic order level system with lead time when delay in payments is permissible, TOP (Spain), Vol 5, No 2, pp. 297– 305.

Shah, V. R., Patel, H. C. and Shah, Y. K.; (1988): Economic ordering quantity when delay in payments of order and shortages are permitted, Gujarat Statistical Review, Vol 15, No 2, pp. 51 – 56.

Shinn, S. W., Hwang, H. P. and Sung, S., (1996): Joint price and lot-size determination under conditions of permissible delay in payments and quantity discounts for freight cost, Euporean Journal of Operation Research, Vol 91, pp. 528-542.

Teng, J. T.; (2002): On economic order quantity under conditions of permissible delay in payments, Journal of Operational Research Society, Vol 53, pp. 915 – 918.

Ward, S. C. and Chapman, C. B.; (1987): Inventory control and trade credit – a reply to Daellenbach, Journal of Operational Research Society, Vol 32, pp.1081 – 1084.

Wee, H. M.; (1995): Joint pricing and replenishment policy for deteriorating inventory with declining market, International Journal of Production Economics, Vol 40, pp. 163 – 171.