SciELO - Scientific Electronic Library Online

 
vol.28 número1A programação matemática positiva como instrumento de calibração e prescrição dos modelos de oferta agrícolaProposal of a heuristic model using genetic algorithms to solve and operational port problem índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Não possue artigos similaresSimilares em SciELO
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Investigação Operacional

versão impressa ISSN 0874-5161

Inv. Op. v.28 n.1 Lisboa jun. 2008

 

Métodos de Penalidade Exacta para Resolução de Problemas de Optimização não Linear

 

Aldina Correia * João Matias † Carlos Serôdio ‡

* Escola Superior de Tecnologia e Gestão de Felgueiras Instituto Politécnico do Porto e Centro de Matemática da UTAD (CM-UTAD)

aldinacorreia@eu.ipp.pt

† Centro de Matemática da UTAD (CM-UTAD) Universidade de Trás-os-Montes e Alto Douro

j_matias@utad.pt

‡ Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB) Universidade de Trás-os-Montes e Alto Douro

cserodio@utad.pt

 

 

Title: Exact Penalty Methods for Nonlinear Optimization Problems

 

Abstract

In this work we present a classification of some of the existing Penalty Methods (denominated the Exact Penalty Methods) and describe some of its limitations and estimated.

With these methods we can solve problems of optimization with continuous, discrete and mixing constrains, without requiring continuity, differentiability or convexity.

The boarding consists of transforming the original problem, in a sequence of problems without constrains, derivate of the initial, making possible its resolution for the methods known for this type of problems.

Thus, the Penalty Methods can be used as the first step for the resolution of constrained problems for methods typically used in by unconstrained problems.

The work finishes discussing a new class of Penalty Methods, for nonlinear optimization, that adjust the penalty parameter dynamically.

 

Resumo

Neste trabalho pretende apresentar-se uma classificação dos Métodos de Penalidade existentes (salientando os Métodos de Penalidade Exacta) e descrever algumas das suas limitações e pressupostos.

Esses métodos permitem resolver problemas de optimização com restrições contínuas, discretas e mistas, sem requerer continuidade, diferenciabilidade ou convexidade.

A abordagem consiste em transformar o problema original, numa sequência de problemas sem restrições, derivados do inicial, possibilitando a sua resolução pelos métodos conhecidos para este tipo de problemas.

Assim, os Métodos de Penalidade podem ser usados como o primeiro passo para a resolução de problemas de optimização permitindo a resolução de problemas com restrições por métodos tipicamente utilizados em problemas sem restrições.

O trabalho termina com a discussão de uma nova classe de Métodos de Penalidade, para optimização não linear, que ajustam o parâmetro de penalidade dinamicamente.

 

Palavras-chave: Optimização não linear com restrições, Métodos de Penalidade, Métodos de Penalidade Exacta, Métodos de Penalidade Dinâmica.

 

 

Texto completo apenas disponível em PDF.

Full text only in PDF.

 

 

Referências

Benson, H.Y, Sen, A., Shanno, D.F and Vanderbei, R. J. (2003) Interior-Point Algorithms, Penalty Methods and Equilibrium Problems, Technical Report ORFE-03-02, Department of Operations Research and Financial Engineering, Princeton University, Princeton NJ, 08544.

Bertsekas, D. P. (1999) Nonlinear Programming, Athena Scientific, Belmont, Massachusetts.

Byrd, R. H., Nocedal, J. e Waltz, R. A. (2006) Steering Exact Penalty Methods for Optimization, Technical Report, Optimization Technology Center, Northwestern University, Evanston, IL 60208, USA.

Byrd, R. H., Gould, N. I., Nocedal, J. e Waltz, R. A. (2002) On the convergence of successive linear-quadratic programing algorithms, Technical Report OTC 2002/5, Optimization Technology Center, Northwestern University, Evanston, IL, USA.

Chen, L. and Goldfarb, D. (2005) Interior-point l2-penalty methods for nonlinear programming with strong global convergence properties, Mathematical Programming, Technical report, IEOR Dept, Columbia University, New York.

Dai, X. (2007) Finite element approximation of the pure Neumann problem using the iterative penalty method, Applied Mathematics and Computation, 186(2):1367-1373.         [ Links ]

Deb, K. (2001) Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley and Sons.

Ferris, M. C. and Pang, J. S. (1997) Engineering and Economic Applications of Complementarity Problems, SIAM Review, 39-4: 669-713.

Fletcher, R. and Leyffer, S. (2002) Nonlinear Programming Without a Penalty Function, Mathematical Programming, 91(2):239-270.

Freund, Robert M. (2004) Penalty and Barrier Methods for Constrained Optimization, Massachusetts, Institute of Technology.

Godfrey C. Onwubolu, and Babu, B. V. (2004) New Optimization Techniques in Engineering, Springer.

Gonzaga, C.C., Karas, E. and Vanti, M. (2003) A Globally Convergent Filter Method for Nonlinear Programming, SIAM J. Optimization, 14(3):646-669.

Gould, N. I., Orban, D. e Toint, P. L. (2003) An interior-point l1-penalty method for nonlinear optimization, Technical Report RAL-TR-2003-022 Rutherford Appleton Laboratory Chilton, Oxfordshire, UK.

Homaifar, A., Lai, S. H. V. and Qi, X. (1994) Constrained Optimizatin via generic algorithms; Simulation 62(4), 242-254.

Hu, X. and Eberhart, R. (2002) Solving constrained nonlinear optimization problems with particle swarm optimization,Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics 2002 (SCI 2002), Orlando, USA.

Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M.P. (1983) Optimization by simulated annealing, Science, 220(4598):671-680.

Klatte, D. and Kummer (2002) Constrained Minima and Lipschitzian Penalties in Metric Spaces, SIAM J. on Optimization, 13(2):619-633.

Leyffer, S., López-Calva, G., and Nocedal (2006) Interior Methods for Mathematical Programs with Complementarity Constraints, SIAM J. on Optimization 17(1):52-77.

Matias, J. L. H. (2003) Técnicas de Penalidade e Barreira Baseadas em Métodos de Pesquisa Directa e a Ferramenta PNL-Pesdir, Tese de Doutoramento, UTAD.

Mongeau, M. and Sartenaer, A. (1995) Automatic decrease of the penalty parameter in exact penalty function methods, European Journal of Operational Research,83(3):686-699.

Wächter, A. and Biegler, L.T. (2004) On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming, Tech. Rep, RC 23149, IBM T. J. Watson Research Center, Yorktown -USA.

Wang, F.Y.and Liu, D. (2006) Advances in Computational Intelligence: Theory and Applications, World Scientific, ISBN 9812567348.

Zaslavski,A. J. (2005) A Suficient Condition for Exact Penalty in Constrained Optimization, SIAM Journal on Optimization, 16(1):250-262.

Zhang, S. (2005) Constrained Optimization by E Constrained Hybrid Algorithm of Particle Swarm Optimization and Genetic Algoritnm, Proceedings of AI 2005: Advances in Artificial Intelligence, Springer.