SciELO - Scientific Electronic Library Online

 
vol.29 número2Influence of Operation Parameters on Metal Deposition in Bright Nickel-plating ProcessAdsorptive and Catalytic Cathodic Stripping Voltammetric Determination of Timonacic índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.29 n.2 Coimbra  2011

 

Schiff Bases of Triethylenetetramine as Corrosion Inhibitors of Zinc in Hydrochloric Acid

 

M.D. Shah, A.S. Patel, G.V. Mudaliar and N.K. Shah*

Chemistry Department, School of Sciences, Gujarat University, Ahmedabad, Gujarat – 380009, India

 

DOI: 10.4152/pea.201102101

 

Abstract

The performance of triethylenetetramine-tribenzylidene (TTTB) and triethylenetetramine-trisalicylidene (TTTS) as corrosion inhibitors for zinc in hydrochloric acid is investigated. At lower concentrations, both inhibitors accelerate the attack but inhibit corrosion at higher concentrations, e.g., 96–100% with 1.0% concentration in 0.5 M and 1.0 M HCl. The efficiency of TTTB decreases while that of TTTS remains almost constant (≥ 99.7%) up to 120 minutes and in the temperature range 35 – 65 ºC. The activation energies are higher in inhibited than in plain acid with both inhibitors. The free energy of adsorption (ΔGads) and heat of adsorption (Qads) are negative, which suggests that there is spontaneous adsorption on metal surface, and from the values of (ΔGads) and (Qads), the values of entropy of adsorption (ΔSads) were calculated. Galvanostatic polarization shows that corrosion is under mixed control with predominance of the cathodic part. In uninhibited 1.0 M HCl, complete cathodic protection is achieved at a current density of 4.2224 Adm-2, but in presence of these inhibitors, much lower current densities are required. Plot of log (θ/1-θ) versus log Cinh gives a straight line, suggesting that inhibitors cover both the anodic and cathodic regions through general adsorption following Langmuir isotherm. The mechanism of inhibition has been proposed.

Keywords: corrosion, zinc, hydrochloric acid, inhibitor.

 

Full text only available in PDF format.

Texto completo disponível apenas em PDF.

 

References

1.       B.S. Shylesha, T.V. Venkatesha, B.M. Praveen, J. Chem. Pharm. Res. 3 (2011) 501.

2.             S.K. Rajappa, T.V. Venkatesha, B.M. Praveen, Bull. Mater. Sci. 31 (2008) 37. 10.1007/s12034-008-0007-3

3.             J. Dobryszycki, S. Biallozor, Corrosion Sci. 43 (2001) 1309. 10.1016/S0010-938X(00)00155-4

4.             M. Masamitsu, Coating Technol. 34 (1999) 378.

5.             A.A. Ahmed, S. Abdel-Hakam, Anti-Corros. Methods Mater. 36 (1989) 4. 10.1108/eb020735

6.             K. Aramaki, Corrosion Sci. 44 (2002) 871. 10.1016/S0010-938X(01)00087-7

7.             Y.K. Agrawal, J.D. Talati, M.D. Shah, M.N. Desai, N.K. Shah, Corrosion Sci. 46 (2004) 633. 10.1016/S0010-938X(03)00174-4

8.             N.O. Eddy, S.A. Odoemelam, E.C. Ogoko, B.I. Ita, Port. Electrochim. Acta 28 (2010) 15. 10.4152/pea.201001015        [ Links ]

9.             Magdalena Nunez, ‘Prevention of Metal Corrosion: New Research’, New York (2005) 8,9.

10.         B. Joseph, S. John, A. Joseph, B. Narayana, Indian J. Chem. Technol. 17 (2010) 366.

11.         P.C. Okafor, Y. Zheng, Corros. Sci. 51 (2009) 850. 10.1016/j.corsci.2009.01.027

12.         A.M. Shams El Din, A.A. El Hosary, R.M. Saleh, J.M. Abd El-Kader,  Werkst. Korros. 28 (1977) 26. 10.1002/maco.19770280107

13.         M.S. Abdel Aal, A.A. Abdel Wahab, A. El. Saied, Corrosion (NACE) 37 (1981) 557.

14.         M.N. Desai, P.O. Chauhan, N.K. Shah: 7th Symposium on Corrosion Inhibitors, Ferrara, Italy (1990); 8th Symposium on Corrosion Inhibitors, Ferrara, Italy (1995).

15.         L. Wang, J.X. Pu, H.C. Luo, Corrosion Sci. 45 (2003) 677. 10.1016/S0010-938X(02)00145-2

16.         M.N. Desai, J.D. Talati, N.K. Shah, Indian J. Chem. 42 (A) (2003) 3027.

17.         J.D. Talati, M.N. Desai, N.K. Shah, Anti-Corros. Methods Mater. 52 (2005) 108. 10.1108/00035590510584825

18.         M.N. Desai, J.D. Talati, N.K. Shah, Anti-Corros. Methods Mater. 55 (2008) 27. 10.1108/00035590810842807

19.         N. Soltani, M. Behpour, S.M. Ghoreishi, H. Naeimi, Corros. Sci. 52 (2010) 1351. 10.1016/j.corsci.2009.11.045

20.         I.N. Putilova, S.A. Balezin, V.P. Barannik, ‘Metallic corrosion inhibitors’ (Pergamon Press, New York) (1960) 31.

21.         T.P. Hoar, R.P. Holiday, J. Appl. Chem. 3 (1963) 503.

22.         R.T. Vashi, H.M. Bhajiwala, S.A. Desai, E-Journal Chem. 7 (2010) 665.

23.         N. Caliskan, E. Akbas, Mater. Chem. Phys. 126 (2011) 983. 10.1016/j.matchemphys.2010.11.051

24.         W. Machu, Werkst. Korros. 21 (1970) 712. 10.1002/maco.19700210905

25.         N. Hackermann, A. Brasunas, (Ed) NACE Basic Corrosion Course, NACE, Houston (1970) 9.

26.         L.I. Antropov, ‘Proceedings of First International Congress on Metallic Corrosion’, London (1961), Butterworths, London (1962) 146.

27.         N. Hackermann, H. Kaesche, J. Electrochem. Soc. 105 (1958) 191. 10.1149/1.2428796

28.         J. March, ‘Advanced Organic Chemistry’, John Wiley and Sons, New York (1992) 36. 

 

Acknowledgement

M.D. Shah, A.S. Patel and G.V. Mudaliar are grateful to Chemistry Department, School of Sciences, Gujarat University, Gujarat, for laboratory facility. One of the authors, Aesha Patel is also thankful to UGC-BSR for research fellowship.

 

* Corresponding author. E-mail address: nishchem2004@yahoo.co.in

Received 24 September 2010; accepted 29 March 2011

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons