SciELO - Scientific Electronic Library Online

 
vol.27 número1Corrosion Inhibition and Adsorption Properties of Ethanol Extract of Vernonia Amygdalina for the Corrosion of Mild Steel in H2SO4Inhibition of the Corrosion of Zinc in H2SO4 by 9-deoxy-9a-aza-9a-methyl-9a-homoerythromycin A (Azithromycin) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.27 n.1 Coimbra  2009

 

Predictive Modeling of Copper in Electro-deposition of Bronze Using Regression and Neural Networks

 

K. Subramanian,1,* V.M. Periasamy,2 M. Pushpavanam,3 K. Ramasamy1

 

1A.C. College of Engineering and Technology, Karaikudi 630 004, TN, India

2B.S.A.Cresent Engineering College, Vandalur, Chennai 600 048, TN, India

3Central Electrochemical Research Institute, Karaikudi 630 006, TN, India

 

Received 18 September 2008; accepted 27 November 2008

 

Abstract

The aim of this research is to obtain electrodeposits of copper-tin over mild steel substrate. The plating parameters were studied and a model is developed using Artificial Neural Networks (ANN). The electrodeposition of copper-tin was carried out from an alkaline cyanide bath. Copper content of coatings in alloy deposition was determined by using X-ray fluorescence spectroscopy. The results were used to create a model for the plating characteristics and also for studies using ANN. The ANN model is compared with the conventional mathematical regression model for analysis.

Keywords: electroplating, copper content, regression, neural network, model.

 

 

Full text only in PDF format

Texto disponível em PDF

 

 

References

1. A. Vernon Lamb and R. Donald Valentine, Plating 52 (1965) 1289-1311.        [ Links ]

2. R. Balaji, M. Pushpavanam, K.Y. Kumar and K. Subramanian, Surface & Coatings Technology 201 (2006) 3205-3211.        [ Links ]

3. K. Ramanathan, V.M. Periasamy and U. Natarajan, Indian Surface Finishing Issue 3 & 4, Vol. IV (2007) 258-264.

4. K. Ramanathan, V.M. Periasamy and U. Natarajan, Port. Electrochim. Acta 26 (2008) 361-368.         [ Links ]

5. T. Shinoda and J. Doherty, Welding Institute Report (1978) 74/1978/PE.

6. J.C. McGlone, Welding Institute Report (1978) 79/1978/PE.

7. J. Doherty, T. Shinoda and J. Weston, Welding Institute Report (1978) 82/1978/PE.

8. I.S. Kim, J.S. Son, C.E. Park, C.W. Lee and K.D.V.Y. Prasad, J. Mater. Process. Technol., 130-131 (2002) 229-234.        [ Links ]

9. N. Murugan and V. Gunaraj, J. Mater. Process. Technol. 168 (2005) 478-487.        [ Links ]

10. S.K. Choudhury et al., Int. J. Mach. Tools Manuf. 39 (1999) 489-504.        [ Links ]

11. S. Das et al., Int. J. Mach. Tools Manuf. 36 (1996) 789-797.        [ Links ]

12. D.A. Dornfield,Neural network sensor fusion for tool condition monitoring, (1990) Ann CIRP 39(1):1.

13. S. Das et al., J. Mater. Process. Technol. 63 (1997) 187-192.        [ Links ]

14. U. Natarajan, V.M. Periasamy and R. Saravanan, Int. J. Adv. Manuf. Technol. 31 (2007) 871-876.        [ Links ]

15. J.H. Lee, D.E. Kim and S.J. Lee, Mechanical System and Signal Processing 10 (1996) 265-276.        [ Links ]

16. Tuğrul Özel and Yiğit Karpat, Int. J. Mach. Tools Manuf.  (2004) 1-13.        [ Links ]

17. S. Hayken,Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey, 1999.

18. R.D. Reed,Neural Smithing, MIT Press, Cambridge, MA, 1999.

19. M. Hagan, M. Beale and H. Demuth, Neural Network Design, PWS Publishing Company, Boston, MA, 1996.

 

* Corresponding author. E-mail address: subbu_accet@hotmail.com

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons