SciELO - Scientific Electronic Library Online

 
vol.26 número1Degradation of Reactive Black 5 and Basic Yellow 28 on Metallic-Polymer CompositesBiosensors for the Polyphenolic Content of Wine Determination índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.26 n.1 Coimbra  2008

 

Online Monitoring of Corrosion in a Liquid-Steam Line Pipe of the Miravalles Geothermal Field

 

Monitoreo en Línea de la Corrosión en Tuberías de Flujo Bifásico en el Campo Geotérmico Miravalles

 

 

G. Tres,1,* E.A. Saborío,2 L.R. Ajún,3 A. Arias,4 A. Rodríguez,5 O. Bravo,6 J.M. Malo7

 

1,2 Centro de Investigación en Corrosión (CICorr)- Instituto Costarricense de Electricidad (ICE)

3,4 Ingeniería de Plantas de Potencia- Instituto Costarricense de Electricidad (ICE)

5 Área de Geociencias,  Recursos Geotérmicos- Instituto Costarricense de Electricidad (ICE)

6 Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica

7Instituto de Investigaciones Eléctricas (IIE), México

 

Received 9th July 2007; accepted 21st December 2007

 

 

Abstract

The goal of this study was to evaluate the internal corrosion in a liquid-steam pipeline (type A515 low carbon steel) of the Geothermal Field of Miravalles (CGM) in Costa Rica, and to determine the corrosion thickness for future geothermal fields. The monitoring was carried out using the following techniques: linear polarization resistance (LPR), electrical resistance (ER), and weight loss. The results show for neutral or alkaline pH conditions and slightly free of oxygen, that the corrosion thickness should be 1.8 mm, in order to guarantee the integrity of the pipe over the field lifetime.

Keywords: erosion, LPR, ER, gravimetric method, ultrasound.

 

 

Texto disponível em PDF

Full text only in PDF format

 

 

References

 

1.  E. Sánchez,  O. Vallejos, A. Rodríguez, et al., Chemical treatments of fluids on the Miravalles Geothermal Field,  Proceedings of the World Geothermal Congress. 2005, Antalaya, Tukey, CD, 7pp.        [ Links ]

2.  A. Mainieri, Costa Rica Country updates report, Proceedings of the World Geothermal Congress, 2005, Antalaya, Tukey, CD, 5pp.

3.  Power Piping ASME Code for Pressure Piping, B31, ASME B31.1, The American Society of Mechanical Engineer, New York, 2004.

4.  G. Tres, E.A. Saborío, Electrochemical Evaluation of Pipelines Materials of Miravalles Geothermal Field,  Congreso Iberoamericano de Corrosión y Protección, 1998, Cartagena, Colombia.

5.  Ingeniería de Plantas de Potencia, UEN Proyectos y Servicios Asociados, Instituto Costarricense de Electricidad.

6.  Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens,  ASTM G 1-90, Vol. 03.02, 1993.

7.   J.A. Gonzalez, Control de la Corrosión: Estudio y Medida por Técnicas Electroquímicas, Grafipren, S.A.,  Madrid, 1989. Capítulos V, VII y X.

8.   M. Stern, A.L. Geary, J. Electrochem. Soc. 104 (1957) 56.

9.   Standard Guide for On-Line Monitoring of Corrosion in Plant Equipment (Electrical and Electrochemical Methods), ASTM G 96, Vol 03.02, 1990.

10. Standard Guide for Conducting Corrosion Coupon Tests in Field Applications, ASTM G 04, Vol. 03.02, 1995.

11. Standard Guide for Examination an Evaluation of Pitting Corrosion, ASTM G 46, Vol. 03.02, 1994.

12. M.G. Fontana, Corrosion Engineering, Third Edition, McGraw Hill, 1986, United States of America, p. 172.

13. S.D. Cramer, P.B. Needham,  Linear Polarization Measurements at High Temperatures in Hypersaline Geothermal Brines, Bureau of Mines Report of Investigations, 1978.

14. R.A. Cottis, S. Turgoose, J. Mendoza, The Effects of Solution Resistance on Electrochemical Noise Resistance Measurements, ASTM STP 1277, 1996, p. 93-100.

15. J.L. Dawson, Electrochemical Noise Measurement: The Definitive In-Situ Technique for Corrosion Applications, ASTM STP 1277, 1996, p. 3-35.

16. Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM G 59, Vol. 03.02, 1997.

17. Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements, ASTM G 106, Vol. 03.02, 1999.

18. G.A. Jensen, D.W. Shannon, et al., Real time Sensors in Geothermal Fluids, Their Costs and Benefits, Canadian Western Region Meeting of the National Association of Corrosion Engineers, 1982.

19. Standard Guide for Applying Statistics to Analysis of Corrosion Data, ASTM G 16, Vol. 03.02, 1995.

20. http://www.rohrbackcosasco.com/datasheets/products/CK-4.pdf. 2007.

21. Standard Guide for On-Line Monitoring of Corrosion in Plant Equipment, ASTM G 96, Vol. 03.02, 1996.

22. I.M. Hutchings, Monograph on the Erosion of Materials by Solid Particle Impact, Materials Technology of the Chemical Process Industries, Inc., Publication No.10, 1993.

23. http://www.cormon.com/products/datasheets/CMEP026.pdf. 2007.

24. http://www.cormon.com/products/datasheets/GL025_CEION.pdf. 2007.

25. J. Harrar, R. McCright, A. Goldberg, Field Electrochemical Measurements of Corrosion Characteristics of Materials in Hipersaline Geothermal Brines,  Report UCRL-52376, California, 1977.

26. J. Urruchurtu, J.M. Malo, Técnicas de Monitoreo y Control de la Corrosión, IMICORR, segunda edición, 1997.

27. M.J. Danielson, Geothermal Scaling and Corrosion, ASTM STP 717,  New Orleans, 1980. p.  41-56.

28. D. Shannon, Corrosion of Iron-Base Alloys versus Alternative Materials in Geothermal Brines, Report PNL-2456, Battelle Pacific Northwest Laboratories, 1977.

 

 

* Corresponding author. E-mail address: gtres@ice.go.cr

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons