SciELO - Scientific Electronic Library Online

 
vol.25 número4Electrochemical Evaluation of Pipelines Materials of the Miravalles Geothermal Field in Costa RicaElectrochemical Synthesis of Zinc(II) Phenoxides and their Coordination Compounds índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Portugaliae Electrochimica Acta

versão impressa ISSN 0872-1904

Port. Electrochim. Acta v.25 n.4 Coimbra  2007

 

Influence of Some Thiadiazole Derivatives on Corrosion Inhibition of Mild Steel in Formic and Acetic Acid Media

M.Z.A. Rafiquee,a S. Khan,a,*N. Saxena,a M.A. Quraishib

a Corrosion Research Laboratory, Department of Applied Chemisty, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202 002, India

b Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi, India

 

Received 30th April 2007; accepted 17th July 2007

 

 

Abstract

2-amino-1, 3, 4-thiadiazoles (AT), 2-amino-5-methyl-1, 3, 4-thiadiazoles (AMT), 2-amino-5-ethyl -1, 3, 4-thiadiazoles (AET) and 2-amino-5-propyl -1, 3, 4-thiadiazoles (APT) were synthesized. FT-IR and NMR studies were done in order to confirm the composition of the synthesized inhibitors. These compounds were evaluated as inhibitors for mild steel in 20% formic acid and 20% acetic acid by weight loss, potentiodynamic polarization and electrochemical impedance techniques. Scanning electron microscopic study (SEM) was also used to investigate the surface morphology of inhibited and uninhibited metal samples. The inhibition efficiency of these compounds was found to vary with the inhibitor concentration, immersion time, temperature and acid concentration. The adsorption of these compounds on the steel surface from both acids were found to obey Langmuir’s adsorption isotherm. These compounds are mixed type inhibitors in both acid solutions. Various thermodynamic parameters (Ea, ΔGads, ΔQ, ΔH, ΔS, t1/2) have also been calculated to investigate the mechanism of corrosion inhibition. Electrochemical impedance study was used to investigate the mechanism of corrosion inhibition.

Keywords: mild steel, potentiodynamic polarization, thiadiazoles, FT-IR spectroscopy, Langmuir adsorption isotherm, scanning electron microscopy

 

Texto disponível em PDF

Full text only in PDF format

 

References

1. I.A. Sekine, A. Masuko and K. Senoo, Corros. Sci. 43 (1987) 553.

2. M.A. Quraishi and D. Jamal, Corrosion 56 (2000) 156.

3. V.B. Singh and R.N. Singh, Corros. Sci. 37 (1995) 1399.

4. I. Sekine, S. Hatakeyama and Y. Nakazawa, Corros. Sci. 27 (1987) 275.

5. E. Heitz, Corrosion of Metals in Organic Solvents, Plenum Press, New York, NY (1974) 226.         [ Links ]

6. I. Sekine, H. Ohkawa and T. Hank, Corros. Sci. 22 (1982) 1113.

7. I. Sekine and A. Chinda, Corrosion 40 (1984) 95.

8. M.M. Singh and A. Gupta. Mater. Chem. Phys. 46 (1996) 15.

9. S. Muralidhara, M.A. Quraishi and S.V.K. Iyer, Anti-Corros. Methods Mater. 44 (1997) 100.

10. M.A. Quraishi, M.A.W. Khan and M. Ajmal, Anti-Corros. Methods Mater. 43 (1996) 5.

11. B. Hammouti, A. Aouniti, M. Taleb, M. Bright and S. Kertit, Corrosion 51 (1995) 411.

12. N. Al-Andis, E. Khamis, A. Al-Mayouf, and H. Aboul-Enein, Corros. Prev. Cont. 42 (1995) 13.

13. Abd-El-Nabey, E. Khammis, M.Sh. Ramadan and A.E. Gindy, Corrosion 52 (1996) 671.

14. E.M. Azhar, B. Mernari, M. Traisnel, F. Bentiss, M. Legrenee, Corros. Sci. 43 (2001) 2229.

15. M. Bentiss, M. Traisnel and M. Lagrenee, J. Appl. Electrochem. 31 (2001) 41.

16. M. Lebrini, M. Lagrenee, H. Vezin, L. Gengembre and F. Bentiss, Corros. Sci. 47 (2005) 485.

17. F. Bentiss, M. Lebrini, H. Vezin, and Lagrenee, Mater. Chem. Phys. 87 (2004) 18.

18. F.A. Ansari and D. Jamal, Mater. Chem. Phys. 77 (2002) 687.

19. M. Kidwai, P. Misra, K.R. Bhushan and B. Dave, Synth. Commun. 30 (2000) 3031.

20. ASTM, Standard Practice for Laboratory Immersion Corrosion Testing of Metals, Annual Book of Standards, G 31-72, 3.02 (1990).

21. S.T. Hirozawa, Proc. 8th Eur. Symp. Corros. Inhi. Ann. Univ., Ferrara, Italy, 1 (1995) 25.

22. H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Electrochim. Acta 50 (2005) 3446.

23. K. Juttner, Electrochim. Acta 35 (1990) 1501.

24. L.J. Jha, Faculty of Science, Delhi University, Delhi, Ph.D. Thesis (Studies of the adsorption of amide derivative during acid corrosion of pure iron and its characterization) (1990) 111.

25. C.B. Breslin and W.M. Carrol, Corros. Sci. 34 (1993) 327.

26. M.G.A. Khedr and M.S. Lashien, Corros. Sci. 33 (1992) 137.

27. S.S.A. Rehim, H.H. Hassan, M.A. Amin, Mater. Chem. Phys. 70 (2001) 64.

28. I.N. Putilova, S.A. Balezin and Baranik, Metallic Corrosion Inhibitors (Pergamon Press, New York), (1960) 31.

29. M.K. Gomma and M.H. Wahdan, Mater. Chem. Phys. 39 (1995) 209.

30. M. Schorr and J. Yahalom, Corros. Sci. 12 (1972) 867.

31. B.G. Ateya, B.E. Andouli and F.M. Nizami, Corros. Sci. 24 (1984) 509.

32. G.K. Gomma and M.H. Wahdan, Indian J. Chem. Technol. 2 (1995) 107.

33. K. Orubite-Okorosaye and N.C. Oforka, J. Appl. Sci. Environ. 8 (2004) 57.

34. P.W. Atkins, Chemisorbed and physisorbed species, a textbook of physical chemistry (University press, Oxford), (1980) 936.

35. M.A. Quraishi, A.S. Mideen, M.A.W. Khan and M. Ajmal, Indian J. Chem. Technol. 1 (1994) 329.

36. M. Ajmal, A.S. Mideen and M.A. Quraishi, Corros. Sci. 36 (1994) 79.

37. M. Houyi, S. Chen, B. Yin, S. Zhao, X. Liu, Corros. Sci. 45 (2003) 867.

38. N.C. Subramaniyam, S. Mayanna, Corros. Sci. 25 (1985) 163.

39. M.M. Singh and A. Gupta, Mater. Chem. Phys. 46 (1996) 15.

40. M.A. Quraishi and S. Khan, J. Appl. Electrochem. 36 (2006) 539.

 

* Corresponding author. E-mail address: sadaf_khan5@rediffmail.com

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons