SciELO - Scientific Electronic Library Online

 
vol.32 número1Comparação entre arranjos de tratamentos sistemáticos e aleatórios em experiências de fertilização de milho (Zea mays L.) para silagemFunções de pedo-transferência para a curva de retenção da água no solo índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de Ciências Agrárias

versão impressa ISSN 0871-018X

Rev. de Ciências Agrárias v.32 n.1 Lisboa jan. 2009

 

Produção de azoto mineral durante a compostagem de fracção sólida de chorume da pecuária leiteira intensiva

Production of mineral nitrogen during composting of dairy cattle slurry solid fraction

L. M. Brito1, I. Mourão1, H. Trindade2 & J. Coutinho2

 

RESUMO

A fracção sólida do chorume (FSC) de duas explorações de pecuária leiteira intensiva foi compostada: (i) em 2004, sobre o solo, incluindo, ou não, palha, e com diferentes níveis de revolvimento; e (ii) em 2005, sobre uma tela de cobertura do solo, com e sem revolvimento, com diferentes coberturas e diferentes volumes. O teor de matéria seca (MS) da FSC da primeira exploração (30%) apresentou um valor superior, embora o rendimento da máquina separadora da FSC tenha sido inferior (1 m3 hora-1) relativamente ao observado na segunda exploração (4 e 3 m3 hora-1 correspondendo a 22% e 24% de MS, respectivamente, em 2004 e 2005). A FSC1 com 30% de MS atingiu elevadas temperaturas logo após a sua separação mas o mesmo não aconteceu com a FSC2 com menor teor de MS, particularmente quando foi compostada sem palha. O pH da FSC variou entre 8 e 9 durante a compostagem e a razão C/N foi semelhante entre tratamentos para o mesmo período de compostagem.

O teor de N-NH4+ foi muito elevado durante a fase termófila da compostagem, após a qual diminuiu, acentuadamente, enquanto que o teor de N-NO3-foi mínimo naquela fase e aumentou após três meses de compostagem. O maior teor de MS inicial da FSC1 em comparação com a FSC2 e a mistura com palha associaram-se a concentrações mais baixas de azoto amoniacal (NNH4+). Considerando estas observações e, ainda, que as elevadas temperaturas durante a compostagem e o pH alcalino da FSC potenciam, eventualmente, a volatilização de amoníaco, a redução deste tipo de perdas de N poderá ser conseguida: (i) diminuindo o rendimento da máquina separadora da FSC; (ii) misturando a FSC com um material com elevada razão C/N; e (iii) diminuindo o número de revolvimentos.

 

ABSTRACT

Screw pressed dairy cattle slurry solid fraction (CSSF) was collected during 2004 and 2005 from two dairy farms with 30% and 22% -24% dry matter (DM) content and the effects of covered either with black polyethylene or with polypropylene, pile dimension, straw addition and of turning frequency on the fate of N were examined. The CSSF with 30% DM was collected at a rate of 1 m3 h-1 and the material with 22% 24% DM was collected at the rate of 4 and 3 3 h-1 min 2004 and 2005, respectively. Thermophilic temperatures were attained soon after separation of CSSF with 30% DM. In contrast, temperatures were much cooler in CSSF with 22% DM without straw. The pH ranged from 8 to 9 and C/N ratio was similar amongst treatments on each sampling occasion.

Mineral N production was characterized - by high NH4+ and low NO3 contents during the thermophilic phase followed by a decrease of NH4+ and an increase of NO3 towards the end of composting. Higher DM, and straw addition were both associated with lower NH4+ compost concentrations. Therefore, to minimize the N loss as NH3 gas caused by the alkaline pH during the thermophilic phase of composting, it is suggested: i) to increase DM by slowing the rate of the screw dewatering mechanism; ii) to increase the C/N ratio of composting mixture; and iii) to reduce turning frequency.

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

REFERÊNCIAS BIBLIOGRÁFICAS

Angelidaki, I. & Ahring, B. K. 993. Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl. Microbiol. Biotechnol., 38: 560–564.

Amon, B., Amon, T., Boxberger, J. & Alt, C. 2001. Emissions of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall. Nutr. Cycl. Agroecosyst., 60: 103-113.         [ Links ]

Bernal, M. P., Paredes, C., Sánchez-Monedero, M. A., & Cegarra, J. 1998. Maturity and stability parameters of compost prepared with a wide range of organic wastes. Bioresour. Technol., 63: 91-99.

CEN, 1999. European Standards - Soil Improvers and Growing Media. European Committee for Standardization.

Chadwick, D.R. 2005. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmosph. Environ., 3: 787–799.

Dewes, T. 1996. Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure. J. Agric. Sci., 127: 501–509.

Ekinci, K., Keener, H.M. & Elwell, D.L. 2000. Composting short paper fiber with broiler litter and additives. Part I: effects of initial pH and carbon/nitrogen ratio on ammonia emission. Compost Sci. Util., 8: 160–172.

Finstein, M.S. & Miller, F.C. 1985. Principles of composting leading to maximization of the decomposition rate, odour control, and cost effectiveness. In. J.K.R. Gasser (eds) Composting of Agricultural and Other Wastes, pp.13-26. Elsevier Applied Science, London.

Fukumoto, Y., Osada, T., Hanajima & D., Haga, K. 2003. Patterns and quantities of NH3, N2O and CH4, emissions during swine manure composting without forced aeration-effect of compost pile scale. Bioresour. Technol, 89: 109-14.

Gonçalves, M. S. & Baptista, M. 2001. Proposta de Regulamentação sobre Qualidade do Composto para Utilização na Agricultura. Laboratório Químico Agrícola Rebelo da Silva, Instituto de Investigação Agrária, Ministério da Agricultura do Desenvolvimento Rural das Pescas, Lisboa.

Hadas, A. & Portnoy R. 1997. Rates of decomposition in soil and release of available nitrogen from cattle manure and municipal waste compost. Compost Sci. Util., 53: 48-54.

Hansen, M.N, Henriksen, K. & Sommer, S.G. 2006. Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: Effects of covering. Atmosph. Environ., 4: 4172–4181.

Eghball, B., Power, J. F., Gilley, J. E. & Doran, J. W. 1997. Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure, J. Environ. Qual., 26: 189-193.

Hao, X. & Chang, C. 2001. Gaseous NO, NO2, and NH3 loss during cattle feedlot manure composting. Phyton-annales Rei Botanicae, 41(3): 81-93.

Hellmann, B., L. Zelles, A. Palojarvi, & Q. Bai. 1997. Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting. Applied and Environ. Microbiol,. 63: 1011-18.

Houba, V.J.G., Van der Lee, J.J. & Novozamsky, I. 1995. Soil Analysis Procedures – other procedures, part 5B, 6th edition. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Netherlands.

Kirchmann, H. 1985. Losses, plant uptake and utilisation during production cycle. Acta Agriculturae Scandinavia. Suppl. 24, Stockholm, 72 p.

Michel, F., 1999. Managing compost piles to maximize natural aeration. Biocycle, 40(3): 56–58.

Peigné, J. & Girardin, P. 2004. Environmental impacts on farm scale composting practices. Water, Air and Soil Pollut., 153: 45–68.

Raviv, M., Medina, S., Krasnovsky, A. & Ziadna, H. 2004. Organic matter and nitrogen conservation in manure compost for organic agriculture. Compost Sci. Utiliz., 12: 6-10.

Schelege, H.G. 1993. General 7th Microbiology, ed. Cambrige University Press, New York.

Sommer, S.G. 2001. Effect of composting on nutrient loss and nitrogen availability of cattle deep litter. Eur. J. Agric., 14: 123–133.

Sommer, S.G. & Moller, H.B. 2000. Emission of greenhouse gases during composting of deep litter from pig production-effect of straw content. J. Agric. Sci., Camb., 134: 327-335.

Tchobanoglous, G., Theisen, H. & Vigil, S. A. 1993. Integrated Solid Waste Management: Engineering Principles and Management Issues. McGraw-Hill, series in water resources and environmental engineering.

Tiquia, S.M. & Tam, N.F. Y. 2000. Fate of nitrogen during composting of chicken litter. Environ. Pollution, 110: 535-541.

Webb, J., Chadwick, D. & Ellis, S. 2001. Will storing farmyard manure in compact anaerobic heaps be a simple and effective means of reducing ammonia emissions?, In Sangiorgi, F. (ed.) Technology Transfer. Proceedings of the 9th International RAMIRAN 2000 Workshop, Gargnano, Italy, 6–9 September 2000. Cemagref, France, pp. 161–166.

Zucconi, F. & Bertoldi, M. 1987. Composts specifications for the production and characterization of composts from municipal solid waste. In M. de Bertoldi, M. P. Ferranti, P. L'Hermite, F. Zucconi (eds) Compost: Quality and Use, pp. 30-50. Elsevier Applied Science, London.

 

1 Escola Superior Agrária de Ponte de Lima, Refóios, 4990-706 Ponte de Lima – Tel: (+351) 258 909 740 – Fax: (+351) 258 909 779 – E-mail: miguelbrito@esa.ipvc.pt;

2 CECEA, Departamento de Edafologia, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-911 Vila Real

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons