SciELO - Scientific Electronic Library Online

 
vol.30 número2Modelação da dinâmica da água e dos sais num Aluviossolo regado com águas de diferente qualidade: ensaio de validação do modelo HYDRUS-1D com observações em monólitosDeficiências de magnésio em solos e culturas do Norte de Portugal índice de autoresíndice de assuntosPesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista de Ciências Agrárias

versão impressa ISSN 0871-018X

Rev. de Ciências Agrárias v.30 n.2 Lisboa jul. 2007

 

P adsorption and desorption capacities of selected Andisols from the Azores, Portugal

Capacidade de adsorção e de desorção de P em Andossolos dos Açores, Portugal

E. Auxtero1, M. Madeira & E. Sousa

 

ABSTRACT

Phosphorous adsorption maxima (P-ads max) and the amounts of P desorbed (P-des) using Langmuir equation and eight successive extractions with 0.01M CaCl2, were determined on sixteen horizons of Andisols from the Azores, Portugal. Results showed that the values of P-ads max and the proportions of P desorbed (P-des) were highly influenced by allophane, Alo, Ald, and Fed contents, and by the values of Alo + ½ Feo and ferrihydrite + allophane. P-des were negatively correlated with these constituents, but not with allophane. Vitrandic Haplustepts and Typic Udivitrands, and Typic Hapludands containing low amounts of allophane, Alo, Ald, and Fed showed low values of P-ads max, but high P-des values. Phosphate ions applied as fertilizer on these soils are highly available for plant use, but maybe easily lost through surface runoff, subsurface drainage and soil erosion. They may require restricted amounts of P fertilizer, and P losses should be controlled to minimize eutrophication of nearby water bodies. Conversely, Typic Placudands containing large amounts of allophane, and Acrudoxic Hydrudands and Typic Hapludands containing large amounts of organic C showed high values of P-ads max, but low P-des, indicating unavailability of P when retained by these soils. Large amounts of slow P-releasing fertilizer may be required for better crop use.

 

RESUMO

A adsorção máxima de P (P-ads max) e a quantidade de P desorvido no solo (P-des), foram determinadas em 16 horizontes superficiais e subsuperficiais de Andossolos dos Açores, Portugal, usando equação de Langmuir e oito extracções sucessivas com cloreto do cálcio. Os valores de P-ads max mostraram uma correlação positiva com os teores de Alo, Ald, Fed, alofana, ferihidrite + + alofana, e com valores de Alo + ½ Feo. Por outro lado, os resultados de P-des, mostraram uma correlação negativa com os mesmos constituintes, excepto com alofana. Vitrandic Haplustepts, Typic Udivitrands e Typic Hapludands mostraram um valor de P-ads max baixo, mas com elevado teor de P-des. Iões fosfato adicionados como fertilizante neste tipo de solos ficam disponíveis para utilização pelas plantas, mas provavelmente, serão facilmente perdidos por drenagem e erosão do solo. Estes solos podem necessitar de quantidades limitadas de fertilizante de fósforo, com controlo das perdas deste elemento para minimizar a eutroficação dos cursos de água das proximidades. Por outro lado, os Typic Placudands com elevado teor de alofana e os Acrudoxic Hydrudands, com elevado teor de carbono orgânico, têm elevado valor de P-ads max e baixo teor de P-des, indicando indisponibilidade do P quando retido por estes solos. Neste caso, poderá ser preferível o uso de grandes quantidades de fertilizante de libertação lenta de P.

 

 

Texto completo disponível apenas em PDF.

Full text only available in PDF format.

 

 

REFERENCES

Auxtero, E., Sousa, E., Madeira & M., Pinheiro, J. 2001. Cation and anion exchange properties of some Andisols of the Azores, Portugal, by compulsive exchange method. Comparison with other methods. Rev. Ciências Agrárias, 24 (3/4): 121- 133.         [ Links ]

Auxtero, E., Madeira, M. & Sousa, E. 2002. Assessment of pH-dependent charge of selected Andisols from Faial Island (Azores), Portugal. Rev. Ciências Agrárias, 25 (3/4): 123- 137.

Auxtero, E., & Madeira, M. 2004. Variable charge characteristics of selected Andisols from the Azores, Portugal. Catena, 56: 111-125.

Auxtero, E., Madeira, M. & Sousa, E. 2005. Extractable P as determined by different test and P adsorption capacity of selected Andisols from the Azores, Portugal. Rev. Ciências Agrárias, XXXVIII(2): 121-132.

Bache, B.W. & Williams, E.G. 1971. A phosphate sorption index for soils. J. Soil Sci., 22(3): 290-301.

Blakemore, L. C., P. L. Searle & B. K. Daly. 1987. Soil bureau laboratory methods: A methods for chemical analysis of soils. New Zealand: Soil Bureau Scientific Report 80.

Chardon, W. J. & Blauuw, D.1998. Kinetic Freundlich equation applied to soils with a high residual phosphorus content. Soil Sci., 163(1): 30-35.

Childs, C. W. 1985. Towards understanding soil mineralogy: II. Notes on ferrihydrite. NZ Bureau Scientific Report No.80. Lower Hutt, NZ, p. 103.

Comfort, S. D. & Eghball, B. 2002. Phosphorus leaching from manure applications. Manure matters, 2(8): 1-3.

De Leenheer, L. & Van Hove, J. 1958. Determination de la teneur en carbone organique des sols. Études critiques des metodes tritrimétriques. Pédologie, 8: 39-77.

Delgado, A. & Torrent, J. 2000. Phosphorus forms and desorption patterns in heavily fertilizad calcareous and limed acid soils. Soil Sci. Soc. Amer. J., 64: 2031-2037.

Fox, R.L. & Kamprath, E.J. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Amer. Proc., 34: 902-907.

Lopez, S.C., Barbaro, N.O. & Tramontini, S. R. 1990. Effect of previous fertilization on P adsorption. Measurement of surface P by isotopic exchange. Soil Sci., 150(3): 594-601.

Madeira, M., Pinheiro, J. Monteiro, F., Fonseca & M. Medina, J. 2001. Características e classificação dos Solos da Ilha do Faial (Arquipélago dos Açores). Rev. Ciências Agrárias, 25 (3/4): 53-66.

Madeira, M., Auxtero, E. & Sousa, E. 2003. Cation and anion exchange properties of Andisols from the Azores, Portugal, as determined by the compulsive exchange and ammonium acetate methods. Geoderma, 117: 225-241.

Madeira, M., Fuleky, G. & Auxtero, E. 2007. Phosphate sorption of European volcanic soils. In Bartoli, F., Bururman, P., Arnolds, O., Stoops, G. & Garcia- -Rodeja, E. (eds) Soils of Volcanic Regions of Europe. Elsevier. (in press).

Maguire, R.O., Foy, R.H., Bailey, J.S. & Sims, J.T. 2001. Estimation of the phosphorus sorption capacity of acidic soils in Ireland. European J. Soil. Sci., 52: 479-487.

Mehra, B.P. & Jackson, H.L. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Min., 7: 317-327.

Mozaffari, M. & Sims, J.T. 1994. Phosphorus availability and sorption in an atlantic coastal plain watershed dominated by animal-based agriculture. Soil Sci., 157: 97-107.

Murphy, J. & Riley, J.P. 1962. Modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.

Olsen, S.R. & Watanabe, F.S. 1957. A method to determine phosphorus adsorption of soils as measured by the Langmuir isotherm. Soil Sci. Soc. Am. Proc., 21: 144-149.

Parfitt, R.L. 1986. Towards understanding soil mineralogy. Part III. Notes on allophanes. New Zealand: Soil Bureau Laboratory Report 10A.

Pierzynski, G.M (ed). 2000. Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters. Southern Cooperative Series Bull. no. 396, USDA-CSREES Regional Committee, USA.

Pinheiro, J., Madeira, M., Monteiro, F. & Medina, J. 2001. Características e classificação dos Andossolos da Ilha do Pico (Arquipélago dos Açores). Rev. de Ciências Agrárias, 24 (3/4): 48-60.

Ricardo, R., Madeira, M., Medina, J., Marques, M & Furtado, A. 1977. Esboço pedológico da Ilha de São Miguel (Açores). Anais do Instituto Superior de Agronomia, XXXVII: 275-385.

Self-Davis, M.L., Moore, P.A., Jr. & Joern, B.C. 2000. Determination of water and/or dilute salt-extractable P. In Pierzynski, G.M. (ed) Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters. Southern cooperative series bull. no. 396, USDACSREES Regional Committee, USA.

Sharpley, A.N. 1983. Effect of soil properties on kinetics of phosphate desorption. Soil Science Society of America Journal, 47: 462-467.

Shoji, S., Nanzyo, M. & Dahlgren, R. 1993. Productivity and utilization of volcanic ash soils. Volcanic ash soils. Genesis, properties and utilization. The Netherlands: Elsevier Science Publishers.

SSS (Soil Survey Staff). 1999. Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Survey, 2nd ed. Agriculture Handbook Number 436. USDA and NRCS, Washington, D. C.

Van Ranst, E., Utami, S.R., Vanderdeelen, J., Shamshuddin, J. 2004. Surface reactivity of Andisols on volcanic ash along the Sunda arc crossing Java Island, Indonesia. Geoderma, 123, 193-203.

Villapando, R.R. & Graetz, D.A. 2001. Phosphorus sorption and desorption properties of the spodic horizon from selected Florida spodosols. Soil Sci. Soc. Am. J., 65: 331-339.

Wada, K. & Gunjigake, N. 1979. Active aluminium and iron and phosphate adsorption in Ando soils. Soil Sci., 128 (6): 331-336.

Woodruff, J.R. & Kamprath, E.J. 1965. P adsorption maxima measured by the Langmuir isotherm and the relationship to P availability. Soil Sci. Soc. Amer. Proc., 29: 148-150.

 

1Departamento de Ciências do Ambiente, Instituto Superior de Agronomia, Tapada da Ajuda, 1349017 Lisboa e-mail: eauxtero@iol.pt

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons