SciELO - Scientific Electronic Library Online

vol.30 número1Caracterização do enraizamento da beterraba sacarina (Beta vulgaris L.) num solo de aluviãoLuta biotécnica contra as principais pragas da nogueira índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Revista de Ciências Agrárias

versão impressa ISSN 0871-018X

Rev. de Ciências Agrárias v.30 n.1 Lisboa jan. 2007


Metabolitos secundários como fontes de bioherbicidas: situação actual e perspectivas

Secondary metabolites as sources of bioherbicides: present situation and perspectives


L.S. Dias1 & A.S. Dias1



Metabolitos secundários produzidos e libertados por plantas, bactérias e fungos estão envolvidos numa variedade de processos ecológicos, nomeadamente como semioquímicos e alelopatinos. Adicionalmente, e para além das suas possíveis funções ecológicas, muitos dos metabolitos secundários são fitotóxicos, constituindo uma fonte relativamente inexplorada de novos herbicidas.

Solanum nigrum (erva-moira) é uma infestante importante e muito bem sucedida num grande número de culturas, nomeadamente hortícolas e será usada como exemplo principal das utilizações actuais de aleloquímicos vegetais bem como das perspectivas de utilização deste tipo de compostos como bioherbicidas.

Nesse âmbito revêem-se as principais estratégias de pesquisa de bioherbicidas e apresenta-se o estado da arte dos modos de acção de aleloquímicos já comercializados como herbicidas (Bialaphos e PPT), patenteados (AAL-toxina) e em investigação, quer produzidos por plantas superiores (sorgoleona e derivados do cineol) quer de origem bacteriana (hidantocidina) e fúngica (fumonisinas, coletotriquina).



Secondary metabolites produced and released by plants, bacteria, and fungi are involved in a number of ecological processes, namely as semiochemicals and allelopathins. In addition, and beside their possible ecological roles, a greater number of secondary metabolites are phytotoxic and represent a relatively unexplored source of new herbicides.

Solanum nigrum (black nightshade) is an important and successful weed in many crops, namely in horticulture, and will be used as a major example of actual and prospective uses of phytoallelochemicals as bioherbicides.

Therefore, the main strategies for bioherbicides search are reviewed and the state of art of the modes of action of allelochemicals is presented, including those already in use as herbicides (Bialaphos and PPT), patented (AAL-toxin), and under investigation, whether produced by plants (sorgoleone and cineol derivatives), bacteria (hydantocidin) or fungi (fumonisins and colletotrichin).


Texto completo disponível apenas em PDF.

Full text only available in PDF format.



Abbas, H.K. & Boyette, C.D. 1992. Phytotoxicity of fumonisin B1 on weed and crop species. Weed Technology, 6: 548-552.         [ Links ]

Abbas, H.K. & Boyette, C.D. 1993. Biological control of weeds using AAL-toxin. United States Patent Number 5,256,628, dated October 26, 1993.

Abbas, H.K. & Duke, S.O. 1995. Phytotoxins from plant pathogens as potential herbicides. Journal of Toxicology – Toxin Reviews, 14: 523-543.

Abbas, H.K., Boyette, C.D., Hoagland, R.E. & Vesonder, R. F. 1991. Bioherbicidal potential of Fusarium moliniforme and its phytotoxin, fumonisin. Weed Science, 39: 673-677.

Abbas, H.K., Smeda, R.J., Gerwick, B.C. & Shier, W.T. 1999. Fumonisin B1 from the fungus Fusarium moliniforme causes contact toxicity to plants: evidence from studies with biosynthetically labelled toxin. Journal of Natural Toxins, 8: 405-420.

Abbas, H.K., Vesonder, R.F., Boyette, C.D. & Peterson, S. W. 1993. Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium). Canadian Journal of Botany, 71: 155-160.

Abbas, H.K., Duke, S.O., Merril Jr, A.H., Wang, E. & Shier, W.T. 1998a. Phytotoxicity of australli-fungin, AAL-toxins and fumonisin B1 to Lemna pausicostata. Phytochemistry, 47: 1509-1514.

Abbas, H.K., Duke, S.O., Paul, R.N., Riley, R.T. & Tanaka, T. 1995. AAL-toxin, a potent natural herbicide which disrupts sphingolipid metabolism of plants. Pesticide Science, 43: 181-187.

Abbas, H.K., Paul, R.N., Riley, P.T., Tanaka, T. & Shier, W.T. 1998b. Ultrastructural effects of AAL-toxin TA from the fungus Alternaria alternata on black nightshade (Solanum nigrum L.) leaf discs and correlation with measures of toxicity. Toxicon, 36: 1821-1832.

Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. & Vivanco, J.M. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301: 1377-1380.

Barata, E.N., Mustaparta, H., Pickett, J.A., Wadhams, L.J. & Araujo, J. 2002. Encoding of host and non-host plant odours by receptor neurones in the eucalyptus woodborer, Phoracantha semipunctata (Coleoptera: Cerambycidae). Journal of Comparative Physiology A, 188: 121-133.

Bassett, I.J. & Munro, D.B. 1985. The biology of Canadian weeds. 67. Solanum ptycanthum Dun., S. nigrum L. and S. sarrachoides Sendt. Canadian Journal of Plant Sciences, 65: 401-414.

Bell, E.A. 1981. The physiological role(s) of secondary (natural) products. In E. E. Conn (ed) Secondary Plant Products, pp. 1-19. Academic Press, New York, USA.

Czarnota, M.A., Paul, R.N., Dayan, F.E., Nimbal, C.I. & Weston, L.E. 2001. Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technology, 15: 813-825.

Dias, A.S., Dias, L.S., Pereira, I.P. 2004. Activity of water extracts of Cistus ladanifer and Lavandula stoechas in soil on germination and early growth of wheat and Phalaris minor. Allelopathy Journal, 14: 59-64.

Dias, L.S., Pereira, I.P. & Dias, A.S. 1995. Evaluation of mediterranean type vegetation for weedicide activity. Allelopathy Journal, 2: 197-204.

Duke, S.O., Dayan, F.E. & Rimando, A.M. 2000a. Natural products and herbicide discovery. In A. H. Cobb & R. C. Kirkwood (eds) Herbicides and their Mechanisms of Action, pp. 105-133. CRC Press, Boca Raton, USA.

Duke, S.O, Dayan, F.E., Romagni, J.G. & Rimando, A.M. 2000b. Natural products as sources of herbicides: current status and future trends. Weed Research, 40: 99-111.

Duke, S.O., Gohbara, M., Paul, R. N. & Duke, M. V. 1992. Colletotrichin causes rapid membrane damage to plant cells. Journal of Phytopathology, 134: 289-305.

Einhellig, F.A. & Souza, I.F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates. Journal of Chemical Ecology, 18: 1-11.

Fay, P.K. & Duke, W.B. 1977. An assessment of allelopathic potential in Avena germplasm. Weed Science, 25: 224-228.

Gelderblom, W.C.A., Semple, E., Marasas, W. F. O. & Farber, E. 1992. The cancer-initiating potential of the fumonisin B mycotoxins. Carcinogenesis, 13: 433-437.

Gonzalez, V.M., Kazimir, J., Nimbal, C., Weston, L.A. & Cheniae, G.M. 1997. Inhibition of photosystem II electron transfer reaction by the natural product sorgoleone. Journal of Agricultural and Food Chemistry, 45: 1415-1421.

Harborne, J.B. 1980. Plant phenolics. In E. A. Bell & B. V. Charlwood (eds) Secondary Plant Products, pp. 329-402, Springer-Verlag, Berlin, Germany.

Harrington, P.M. & Junk, M.E. 1994. Process for the preparation of (+)hydantocidin and analogs thereof. United States Patent Number 5,354,868 dated October 11, 1994.

Harrington, P.M. & Junk, M.E. 1996. Process and intermediates for the preparation of (+)-hydantocidin and analogs thereof. United States Patent Number 5,543,510 dated August 6, 1996.

Heap, I. 2005. The International Survey of Herbicide Resistant Weeds. Online. Internet. November 10, 2005. Available

Hejl, A.M. & Koster, K.L. 2004. The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. Journal of Chemical Ecology, 30: 2181-2191.

Hoagland, R.E. 2001. Microbial allelochemicals and pathogens as bioherbicidal agents. Weed Technology, 15: 835-857.

Holm, L.G., Plucknett, D.L., Pancho, J.V. & Herberger, J.P. 1977. The World's Worst Weeds. Distribution and Biology. University Press of Hawaii, Honolulu, USA.

Lockerman, R.H. & Putnam, A.R. (1979) Evaluation of allelopathic cucumbers (Cucumis sativus) as an aid to weed control. Weed Science, 27: 54-57.

Macías, F.A., Molinillo, J.M.G., Chinchilla, D. & Galindo, J.C.G. 2004. Heliannanes – a structure-activity relationship (SAR) study. In F. A. Macías, J.C.G. Galindo, J.M.G. Molinillo & H.G. Cutler (eds) Allelopathy: Chemistry and Modes of Action of Allelochemicals, pp. 103-124. CRC Press, Boca Raton, USA.

Massantini, F., Caporali, F. & Zellini, G. 1977. Evidence for allelopathic control of weeds in lines of soybean. Proceedings EWRS Symposium ‘The Different Methods of Weed Control and their Integration’, vol. 1, pp. 23-28. Uppsala, Sweden.

Meazza, G., Scheffler, B.E., Tellez, M. R., Rimando, A.M., Romagni, J.G., Duke, S.O., Nanayakkara, D., Khan, I. A., Abourashed, E. A. & Dayan, F.E. 2002. The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry, 59: 281-288.

Mothes, K. 1980. Historical introduction. In E. A. Bell & B. V. Charlwood (eds) Secondary Plant Products, pp. 1-10. Springer-Verlag, Berlin, Germany.

Nakajima, M., Itoi, K., Takamatsu, Y., Kinoshita, T., Okazaki, T., Kawakubo, K., Shindo, M., Honma, T., Tohjigamori, M. & Haneishi, T. 1991. Hydantocidin: a new compound with herbicidal activity from Streptomyces hygroscopicus. The Journal of Antibiotics, 44: 293-300.

Nimbal, C.I., Yerkes, C.N., Weston, L.A. & Weller, S. C. 1996. Herbicidal activity and site of action of the natural product sorgoleone. Pesticide Biochemistry and Physiology, 54: 73-83.

Putnam, A.R. & Duke, W.B. 1974. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science, 185: 370-372.

Rasmussen, J.A., Hejl, A.M., Einhellig, F. A. & Thomas, J. A. 1992. Sorgoleone from root exudate inhibits mitochondrial functions. Journal of Chemical Ecology, 18: 197-207.

Rimando, A.M., Dayan, F.E., Czarnota, M. A., Weston, L. A. & Duke, S. O. 1998. A new photosystem II electron transfer inhibitor from Sorghum bicolor. Journal of Natural Products, 61: 927-930.

Rizvi, S.J.H. & Rizvi, V. 1992. Exploitation of allelochemicals in improving crop productivity. In S. J. H. Rizvi & V. Rizvi (eds) Allelopathy. Basic and Applied Aspects, pp. 444-472. Chapman & Hall, London, UK.

Romagni, J.G., Duke, S.O. & Dayan, F.E. 2000. Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiology, 123: 725-732.

Streibig, J.C., Dayan, F.E., Rimando, A.M. & Duke, S.O. 1999. Joint action of natural and synthetic photosystem II inhibitors. Pesticide Science, 55: 137-146.

Swain, T. 1977. Secondary compounds as protective agents. Annual Review of Plant Physiology, 28: 479-501.

Weller, R.F. & Phipps, R. H. 1978/1979. A review of black nightshade (Solanum nigrum L.). Protection Ecology, 1: 121-139.

Williams, G.H. 1982. Dictionary of Weeds of Western Europe. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.

Zimdahl, R.L. 1993. Fundamentals of Weed Science. Academic Press Inc., San Diego, USA.


1 Chemical Ecology Unit, Centro de Ecologia e Ambiente, Universidade de Évora, Ap. 94, 7002-554 Évora; e-mail:

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons