SciELO - Scientific Electronic Library Online

 
 número34Descubrimiento de Conocimiento en Historias Clínicas mediante Minería de TextoPlanificación estática para la transmisión de datos en tiempo real con WSN índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação

versão impressa ISSN 1646-9895

Resumo

ACOSTA, Rubén Sánchez; VILLEGAS, Claudio Meneses  e  NORAMBUENA, Brian Keith. Heuristics for Data Augmentation in NLP: Application to scientific paper reviews. RISTI [online]. 2019, n.34, pp.44-53. ISSN 1646-9895.  http://dx.doi.org/10.17013/risti.34.44-53.

Data augmentation techniques are essential for training machine learning algorithms, where the initial data set is smaller than required due to the model complexity. In machine learning models, the robustness of the training process is highly dependent on large volumes of labeled data, which are expensive to produce. An effective approach to deal with this problem is to automatically generate new tagged examples using data augmentation techniques. In the processing of natural language, particularly in the Spanish language, there is a lack of well-defined techniques that allow increasing a set of data. In this article, we propose a set of heuristics for data augmentation in NLP, which are applied to the domain of reviews of scientific articles.

Palavras-chave : Data Augmentation; NLP; Paper Reviews.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons