SciELO - Scientific Electronic Library Online

 
vol.36 número5Corrosion Inhibition of Zn in a 0.5 M HCl Solution by Ailanthus Altissima Extract índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay articulos similaresSimilares en SciELO

Compartir


Portugaliae Electrochimica Acta

versión impresa ISSN 0872-1904

Resumen

GUCHHAIT, Sujit Kumar  y  PAUL, Subir. Electrochemical Development of Ni-Cu Electrodes by Direct and Pulse Current Coating in Ethanol Electro-oxidation for DEFC. Port. Electrochim. Acta [online]. 2018, vol.36, n.5, pp.293-307. ISSN 0872-1904.  https://doi.org/10.4152/pea.201805293.

The electrocatalytic property of electrode materials is the key for getting high cell current and low overvoltage of a fuel cell from fuels electro-oxidation. The bridge between laboratory scale fuel cell development and its fully commercialization is the development of inexpensive but energetic electrode materials. The catalytic actions of an electrode substrate are strongly influenced by the morphology and the grain fineness of the deposited materials. The present investigation aims at finding the effect of electrode deposition mode viz. direct current and pulse current coating, to produce an electrodeposited substrate that can deliver the highest current in a direct ethanol fuel cell. Nickel (Ni) is one of such non precious materials which has been produced through electro synthesis by both pulse current (PC) and direct current (DC) coating. It has been found that the morphology of the deposited is highly influenced by the current density, duty cycle, electrolyte chemistry and right selection of deposition potential on the cathodic polarization curve around the Tafel lines. Electrochemical characterization has been done by cyclic voltammetry (CV), chronoamperometry (CA) and potentiodynamic polarization (PD) studies. The substrate of the electrodeposited material has also been characterized by X-Ray Diffraction analysis (XRD), Energy Dispersive X-Ray Analysis (EDXA) and Scanning Electron Microscope (SEM). It has also been found that the electro synthesis by pulse current coating at pre-selected deposition potential, right at the end of Tafel region, at 40 oC temperature and 150 second deposition time, gives the highest delivering current of ethanol fuel oxidation.

Palabras clave : Direct ethanol fuel cell; inexpensive Ni-electrode; direct and pulse current coating; cyclic voltammetry; XRD; EDXA; SEM.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons