SciELO - Scientific Electronic Library Online

 
vol.30 issue1Antimicrobial activity of Foeniculum vulgare Miller essential oilThe influence of mechanical pruning on olive production and shaker efficiency author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista de Ciências Agrárias

Print version ISSN 0871-018X

Abstract

FERREIRA, R.; ALVES-PEREIRA, I.; MAGRICO, S.  and  FERRAZ-FRANCO, C.. Different cellular behaviour and antioxidant response of Saccharomyces cerevisiae and Saccharomyces chevalieri growing in presence of ammonium metavanadate. Rev. de Ciências Agrárias [online]. 2007, vol.30, n.1, pp.455-464. ISSN 0871-018X.

The fermentation of wine is a complex microbiological process which requires yeast adaptation to stress conditions. In the cellular environment of aerobic organisms naturally reactive oxygen species (ROS) occurs as by-products of mitochondrial respiration. The higher reactivity of these chemical species could cause molecular damages that in several cases induce cellular death. In common physiological conditions or as response to oxidative stress, the cell can generate adapted responses which involve antioxidants mechanisms as glutathione reductase (GR; EC 1.6.4.2) and catalase T (CAT T; EC 1.11.1.6) and A (CAT A; EC 1.11.1.6) enzymes. Vanadium, a heavy metal present in several pesticides could generate ROS changing the intracellular redox state and cause deleterious effects in yeasts exposed to higher levels of this element. The main objective of this work was to compare the effects of ammonium metavanadate (NH4VO3), a pentavalent salt of vanadium on cellular viability and GR, CAT T and CAT A activities of wine yeast Saccharomyces cerevisiae UE-ME3 and Saccharomyces chevalieri UE-ME1. The results obtained show that S. chevalieri UE-ME1 has lower tolerance to NH4VO3 than S. cerevisiae UE-ME3, since S. chevalieri cultures do not survive to concentration values of ammonium metavanadate higher than 7,5 mM, whereas S. cerevisiae cells are still viable in the presence of 75 mM. S. chevalieri has an enzymatic activity lower than S. cerevisiae, although for both yeast species NH4VO3 could behave as oxidative stress inductor, causing a significant decrease of GR activity (P<0,01) and a significant increase of CAT A activity (P<0,01). The results show also an increase of CAT T activity in both yeast species, which can be interpreted as a protective response to oxidative stress. Differences on response to amonium metavanadate by both species of Saccharomyces could be partially justified by more efficient antioxidant systems in S. cerevisiae UE-ME3.

        · abstract in Portuguese     · text in Portuguese     · Portuguese ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License