Effect of the addition of peach palm (*Bactris gasipaes*) peel flour on the color and sensory properties of wheat bread

Efeito da adição de farinha de casca de pêssego (*Bactris gasipaes*) na cor e nas propriedades sensoriais do pão de trigo

Luis E. Ordóñez-Santos*, Jader Martínez-Girón and Ana M. Figueroa-Molano

Universidad Nacional de Colombia-Sede Palmira, Facultad de Ingeniería y Administración, Departamento de Ingeniería, Carrera 32 N 12-00, Palmira, Valle del Cauca, Colombia.

(*E-mail: luedor4@hotmail.com)

http://dx.doi.org/10.19084/RCA16008

Received/recebido: 2016.01.15
Received in revised form/recebido em versão revista: 2016.03.22
Accepted/aceite: 2016.03.22

ABSTRACT

The aim of this study was to evaluate the color and sensory characteristics of bread made with different levels of peach palm peel flour (PPPF). This flour was added into breads with a proportion of 2.5-10% (w/w), and studied its effect on total carotenoids, CIELab parameters, and sensory characteristics of bread. Results showed that PPPF supplementation increased the carotenoid content of bread. The color test showed that high levels of PPPF were associated with a decreased L* and H°, while, browning index (BI), increases. Sensory evaluation ratings indicated that bread with acceptable quality attributes can be prepared from wheat flour fortified with PPPF up to 5% level. Thus, peach palm peel, a by-product from the peach palm processing, could be utilized for the preparation of wheat breads.

Keywords: Peach palm peel flour, bread, Total carotenoids, color analysis, sensorial analysis.

RESUMO

O objetivo deste estudo foi avaliar a cor e as características sensoriais dos pães feitos com diferentes teores de farinha de casca de pêssego (PPPF). Esta farinha foi adicionada aos pães em concentrações de 2,5-10% (m/m), sendo estudado o seu efeito sobre os carotenóides totais, parâmetros de cor CIELab, bem como as suas características sensoriais. Os resultados mostraram que a adição de PPPF aumentou o teor de carotenóides do pão. O teste de cores mostraram os níveis elevados de PPPF estão associados com a diminuição do L* e do H°, enquanto que o IB aumenta. A avaliação sensorial indicou poder ser preparado pão com atributos de qualidade aceitáveis, a partir de farinha de trigo fortificada com PPPF até um teor de 5% (m/m). Assim, a pele do pêssego, um subproduto do processamento de pêssego palma, poderia ser utilizada para a preparação de pães.

Palavras-chave: farinha de casca de pêssego, pão, carotenóides totais, análise da cor, análise sensorial.

INTRODUCTION

The color parameter in food is one of the most important quality attributes, and plays an important role in its appearance, processing and acceptability (Demirhan & Özbek, 2011). The color of bread depends on various factors such as the type of flour, type and quantity of additives used, baking temperature and time (Bchir et al., 2014). Among the most common additives used in the food industry, synthetic and natural colorants are used to intensify, compensate or add color to a manufactured product, thereby maintaining a pleasant and attractive appearance that resembles the natural product (Santos et al., 2014). However, consumption of synthetic colorants in food may present a risk to health. Studies report the development of allergies in children (McCann et al., 2007) and the increased risk of cancer associated with the consumption of artificial...
colorants (Mpountoukas et al., 2010). However, the
demand for natural colorants, such as β-carotene,
annatto, lycopene, paprika extract, and β-Apor-8’-
carothenal, has increased due to the global trend of
maintaining good health and reducing the risk of
disease.

Peach palm, pejibaye or chontaduro (Bactris
gasipaes) is an important fruit in the feeding of
native populations since pre-Colombian time. This
fruit is source of carotenoids in the diet of the rural
and urban population of tropical America, and is
also exported to ethnic markets in USA (Rojas-
Garbanzo et al., 2011). The yellow orange color
of the peach palm pulp is due to the presence of
carotenoids (1.1 mg/100g – 22.3 mg/100g), being
β-carotene (26.2% to 47.9%), Z-γ-carotene (18.2%
to 34.3%) and Z-lycopene (10.2% to 26.8%) the
predominant ones (Jatunov et al., 2010). The peach
palm fruit processing allows to obtain products
such as flour, canned fruit, jam, chips and
fermented alcoholic beverage (Graefe et al., 2013).
The fruit processing generates large volumes of
solid waste in the form of peels, kernels, and pulp
following the industrial processing of fruit juices.
One of the most effective options for management
of fruit residues is the recovery of phytochemicals/
bioactive compounds from the fruit residues,
which could be used in food, cosmetic, and
pharmaceutical industries (Babbar et al., 2015).

Several studies have reported the effect of fruit by-
products on baked food color. Ajila et al. (2008) and
Ajila et al. (2010) used mango peel powder in dough
biscuits and macaroni preparations. Salgado et al.
(2011) used cupuassu peel in breads, and Mildner-
Szkudlarz et al. (2013) used grape pomace in wheat
biscuits. Pear, apple and date by-products were
used by Bchir et al. (2014) in breads. However, these
types of investigations are still scarce, especially
studies to evaluate natural colorants which can
be an alternative to synthetic colorants in bakery
products. The aim of this study was to evaluate the
color and sensory characteristics of wheat bread
made with different levels of peach palm peel flour
(PPPF).

MATERIAL AND METHODS

Peach palm peel flour (PPPF) preparation
Cooked peach palm fruit (Bactris gasipaes) were
acquired in the municipal market in Palmira
(Colombia), and then the epicarp (peels) was
removed and cut. Peels was oven-dried at 60 °C
until the moisture level was constant (11% w/w).
Dried peel was ground to a powdered form using
an electrical grinder and passed through a 0.25
mm sieve, and refrigerated to 4°C in a refrigeration
unit until its later use.

Bread Preparation Procedures
The standard wheat bread or control was prepared
by mixing 300 g wheat flour, 93 g water, 6 g yeast,
30 g sugar, 6 g salt, 30 g egg, 75 g margarine and
0.03 g tartrazine, the dye to buy Fleischmann
Colombia (E102 or FD&C Yellow 5). The other bread
samples were developed by replacing conventional
wheat flour with 2.5, 5.0, 7.5 and 10% PPPF, and the
tartrazine was not included in the formulation.
The bread ingredients used in this study were
obtained from a local market. The formulation of
bread is prepared considering the specifications
described by NTC 1363. The ingredients were
kneaded by hand for 10 minutes, 40 g dough pieces
were fermented for 35 min at 35 ± 2°C and 90%
relative humidity, and baked for 25 min at 180 °C
(Oven bakery, Essen).

Physicochemical analysis
For the determination of the pH of bread, the
sample of 5 g was placed into a 250 ml beaker and
50 ml distilled water was added. To determine the
pH a digital pH metre (pH-metre Metrohm ® 744
pH Meter) was used. Before using, the pH metre
was calibrated with commercial buffer solutions
of pH 7.0 and pH 4.0. Dry matter of samples (%) was
obtained by drying them in an oven at 105 °C
until reaching constant dry weight, and dry matter
was performed according to Association of Official

Total carotenoids were extracted and quantified
according Barrett & Anthon (2001), Fish et al. (2002),
Nagal et al. (2012) and Ordóñez-Santos et al. (2014).
Briefly, 0.1 g of the sample was weighed in a tube,
and then 7 mL of 4:3 ethanol/hexane was added,
the tube was capped, covered with aluminum
foil, and the flask was then placed in crushed ice
and shaken for 1 h, after which 1 mL of distilled
water was added and shaking was continued for
a further 5 min. A 3 mL sample was taken from
the organic (hexane) phase using a Pasteur pipette
and absorbance of the extract was measured at
450 nm against hexane in a Spectrophotometer
Jenway 6320D (Staffordshire, ST15 OSA, UK). The
Carotenoid concentration (mg/100 g) is calculated using the equation.

Carotenoid as β-carotene (mg/100 g) = \(\frac{A \times V \times P \times 100}{E \times W} \) (1)

where, \(A = \) absorbance at 453 nm, \(V = \) volume of organic phase, \(P = \) molecular weight in g/mole, \(E = \) molar extinction coefficient of 13.9 \(\times 10^4 \) M\(^{-1}\) cm\(^{-1}\), and \(W = \) weight of sample in grams. A Minolta CR-400 color colorimeter was used for this study. The instrument was standardized each time with a black and a white (\(Y = 89.5; x = 0.3176; y = 0.3347 \)) tile using illuminant D65, and a 2° observer. The parameter \(L^* \) were determined by reflectance. In addition, the Chroma, hue angle, browning index (BI), and total color change (\(\Delta E \)), were calculated by the equations

\[C = (a^2 + b^2)^{1/2} \] (2)

\[h = \tan^{-1} \left(\frac{b^*}{a^*} \right) \] (3)

\[\Delta E = (\Delta a^2 + \Delta b^2 + \Delta L^2)^{1/2} \] (4)

\[BI = 100 \times \left(X - 0.31 / 0.17 \right) \] (5)

Where

\[X = (a^* + 1.75L^*) / (5.645L^* + a^* - 3.012b^*) \] (6)

Sensory evaluation

The sensory characteristics of standard bread, and incorporated with PPPF were conducted to determine the acceptability of the product according to method described by Ocen & Xu (2013) with a slight modification. An untrained panel of 80 members (males and females) performed the sensory evaluation of breads, which have been freshly prepared and cooled to 30 °C. Breads were evaluated on the basis of acceptance of their texture, color, taste, odor, and overall acceptability on a nine-point hedonic scale. The values ranged from “like extremely” to “dislike extremely” corresponding to the highest and lowest scores of “9” and “1”, respectively. Immediately before sensory testing, the breads were sliced into 30 mm thick slice.

Statistical analyses

The experimental design was a randomized blocks, the treatments were control, 2.5, 5.0, 7.5 and 10% PPPF, with five replicates per treatment. Data was analyzed with a one-way ANOVA and treatments means were compared using Tukey’s test (\(p \leq 0.05 \)). All statistical calculations were performed using SPSS 18 for Windows.

RESULTS AND DISCUSSION

Physicochemical properties of peach palm peel flour and of breads

The physicochemical properties analyzed PPPF listed in Table 1. The pH of the flour, are close to those recorded in twenty races chontaduro evaluated by Vargas & Arguelles (2000) (5.43-6.31). The mean dry matter flour chontaduro reported by De Oliveira et al. (2006) (92.91%), are close to those obtained in the present study. The carotenoid content in PPPF exceed those reported by Rojas-Garbanzo et al. (2011) (23.77 mg/100 g flour) flour peach palm fruit. Probably these differences in carotenoid concentrations are related to genetic differences, degree of fertilization, and drying temperature in the case of Rojas-Garbanzo et al. (2011) was 72 °C and in the present study samples dried at 60 °C. Low values of \(L^* \), \(C^* \) and high \(IB \), \(H^o \), respectively, indicating the presence of a dark yellow color in the PPPF, the flour color is mainly due to the high content of carotenoids (59.31 mg / 100 g flour) (Table 1) and the existence of brown pigments generated during the process of dehydration of the sample.

Table 2 shows the physicochemical properties of the formulations evaluated in this study. In all cases, the measured variables are affected statistically (\(p < 0.001 \)) with the addition of PPPF. The pH, dry matter and total carotenoid concentration in bread significantly increased with the increase of PPPF vs. control (Table 2). The increase in these properties on bread clearly is a result of high dry matter and concentration of carotenoids in the PPPF (Table 1). Moreover, comparing the concentration of total

<table>
<thead>
<tr>
<th>Variable</th>
<th>Peach palm peel flour</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.20±0.19</td>
</tr>
<tr>
<td>Dry matter (%)</td>
<td>89.35±0.68</td>
</tr>
<tr>
<td>Total carotenoids (mg/ 100 g)</td>
<td>59.31±1.61</td>
</tr>
<tr>
<td>(L^*)</td>
<td>28.16±0.55</td>
</tr>
<tr>
<td>(C^*)</td>
<td>14.20±0.72</td>
</tr>
<tr>
<td>(H^o)</td>
<td>70.93±0.43</td>
</tr>
<tr>
<td>IB</td>
<td>75.10±3.17</td>
</tr>
</tbody>
</table>

Table 1 - Mean and standard deviation of physicochemical properties of peach palm peel flour
carotenoids in the PPPF, and breads, significantly reduced carotenoid pigments (Table 1 and 2) are observed. This loss may be associated with the processes of kneading and baking bread, in the case to the incorporation of water, and oxygen in the dough allow activation of lipoxygenase (LOX), responsible for the oxidation of enzyme polyunsaturated fatty acids, which in turn starts the oxidation of carotenoids, and during baking temperatures between 98.40 to 98.80 °C, which can starts oxidation and isomerization processes in carotenoids (Hidalgo et al., 2010). Carotenoids losses during the baked food production have been previously reported by Ajila et al. (2008), Ajila et al. (2010), and Azizi et al. (2012).

Sensory parameters of breads
The effect of incorporation of PPPF on the sensory properties and overall acceptability score is shown in Table 4. In all cases, the sensory attributes are significantly affected by the addition of flour, and the sensory properties decreased significantly with flour bread addition 7.5 and 10% (w/w). The color of the bread containing PPPF was as acceptable as those of control breads up to 5% level of PPPF incorporation. Breads with 5.0% of flour obtained statistically higher qualifications in the descriptors evaluated; this result indicates that this level of substitution had the highest degree of acceptance by consumers (Table 4). Therefore, breads of acceptable overall quality can be prepared using 5% (w/w) PPPF formulations.
CONCLUSIONS

Peach palm peel flour (PPPF) is an important source of carotenoids. Addition of PPPF increased carotenoid concentration in bread, and can be an alternative replacement to tartrazine in the formulation of this product. The studies on sensory evaluations showed that the breads incorporated with PPPF up to 5% (w/w) level resulted in products with good acceptability. Thus, peach palm peel, a by-product from the peach palm processing, could be utilized for the preparation of breads and other food products free synthetic colorants.

ACKNOWLEDGMENTS

The National Research of Seed Program Creation and Innovation National University of Colombia 2013–2015, Colombia, supported this study.
REFERENCES

Vargas Ávila, G. and Arguelles Cárdenas, J. (2000) - Clasificación y caracterización de veinte razas de palma de chontaduro (Bactris gasipaes HBK) de acuerdo con las propiedades físico químicas y bromatológicas del fruto. Instituto Amazónico de Investigaciones Científicas. SINCHI.