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Abstract 

A new way for deriving the fundamental equation of the electrochemistry has been 
developed in the potential range in which Butler-Volmer behaviour is found. In this 
approach the frequency factor is considered to be a function of the potential instead of 
the activation energy. The frequency factor is calculated by means of a classical 
statistical mechanics treatment giving rise to a new definition for the symmetry factor. 
A new expression for the standard rate constant in adiabatic heterogeneous charge 
transfer reactions has been derived. 
 
Keywords: heterogeneous charge transfer, standard rate constant, potential dependent 
frequency factor. 

 

 
Introduction 

Although the first attempt to give a theoretical explanation of the kinetic aspects 
of interfacial charge transfer was made in the early thirties [1], plenty of different 
and important contributions have been made since then and are made in the 
present. An account of the main contributions to the theory of electron transfers 
can be found in different general works [2-6]. Marcus and Hush [7,8] made the 
first systematic work on the so called [9] outer sphere electron transfers, which 
behave, at the electrode-electrolyte interphase, as first order heterogeneous 
reactions. The first work in which a frequency factor was deduced with the 
adequate dimensions for a first order heterogeneous reaction (cms-1) was made 
by Evans and Hush [10] who assumed the transition state formalism and deduced 

a frequency factor A = 
2/1

m 2 







π

TkB (where kB represents the Boltzmann constant 

and m the mass of a molecule or ion (the electroactive substance)) with the 
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demanded dimensions and an order the magnitude, depending on T and m, of 
around 104 cms-1. A previous deduction of the fundamental equation of the 
Electrochemistry was made by Frumkin after considering a work of Bronsted and 
Pedersen [11] on the dissociation of a homologous series of organic acids. 
Frumkin had the intuition [12] to consider the behaviour of a redox system at 
different potentials as parallel to the behaviour described by the former two 
authors. The variation of a thermodynamic magnitude, the free energy for the 
hydrogen dissociation reaction in the homologous series of organic acids, was 
experimentally found to be linearly related with the variation of a kinetic 
magnitude, like the activation energy for the proton transfer from the molecules 
of acid to water molecules. Frumkin thought that a redox system at different 
potentials behaved like a homologous series of substances by considering that the 
free energy of reaction from the oxidized to the reduced form can be linearly 
changed with that potential, and, consequently, he established that the variation 
of the activation energy for the redox charge transfer was linearly related with the 
free energy of reaction, i. e., with the potential difference across the interphasial 
zone times the electric charge of the particle involved. By using this relationship 
Frumkin could deduce the exponential dependence experimentally found to exist 
(or the equivalent logarithmic expression experimentally established by Tafel 
[13]) between current density, j, and the applied potential in Redox electrode 
processes. Horiuti and Polanyi [14] were the first to apply the transition state 
theory to make the theoretical interpretation of an electrodic reaction. The link 
between the change in the electrochemical free energy of reaction, expressed by: 
 

∆(∆G) = z e0 ∆ϕ (1) 
 
(where z represents the number of electrons transferred (one in an unique 
electron transfer event), e0 is the charge of the electron and ∆ϕ the Galvani´s or 
absolute potential difference through the interphasial region), and the change in 
the activation energy for interfacial electron transfers is established by 
introducing the so called symmetry factor, β, so that: 
 

∆(∆G*) = β ∆(∆G) = β z e0 ∆ϕ (2) 
or 
 

∆G*(E) = ∆G*0 + β z F (E - E
0´) (3) 

 

where ∆G*0 represents the activation energy measured at the formal potential, 
E0´. E represents the value of the potential difference across the double layer 
measured with respect to any reference electrode, with E = ∆ϕ + E*, where E* 
represents the unknown absolute potential difference across the double layer of 
the reference electrode and E0´ the so called formal potential [15]. 
Thus, according to the Frumkin formulation, there exists a linear relation 
between the activation energy for electron transfer reactions and the potential 
value, and the proportionality coefficient is the symmetry factor, β, which for 
monoelectronic electron transfers coincides with the transfer coefficient. 
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Consequently, the rate constant for electron transfers between electrode and 
electrolyte results to show an exponential relation to the potential value through 
the expressed dependence existing between ∆G* and E, i. e,: 
 

( ) ( )
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
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
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 ∆
=

∗

RT

E
Ek

G
- exp  Z  κ  (4) 

 

where κ represents the transmission coefficient and Z the frequency factor 
(which is a function of the temperature, but not of the potential). According to 
the model based on the relations deduced by Bronsted, a determination of ∆G* 
from the cut of the energy curves representing the oxidized and reduced states of 
the Redox couple, allowed to expect a variation of β with E, more accentuated 
the closer the cutting point of the energy surfaces is situated with respect to the 
minimum of the energy states representing the oxidised and the reduced form of 
the redox couple. Likewise, the definition of ∆G* for electrode-electrolyte charge 
transfers made by Marcus lead to a quadratic relationship between the activation 
energy and the potential and, therefore, to a linear rate of change of β with the 
potential, expressed by the following equation: 
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where λ represents the reorganization energy of the solvation shell in the 
electroactive substances and is related with the activation energy according to the 
equation. According to Eq. 5, the variation of β to be expected in the Redox 
couple [Fe(CN)6]

3-/4- (for a value of λ = 119.4 kJ/mol (or λ = λi + λ0= (0.379 + 
0.860) eV = 1.239 eV, see for instance Ref. [16]) should be of around 0.4 per 
Volt, or 0.1 in 250 mV. It is not easy to study any simple reaction transfer 
without interference of any other parallel reaction across a sufficiently wide 
potential range, at least in aqueous solutions, which explains that only few works 
seem to have successfully proved the validity of this prediction. Thus, Savéant 
and Tessier [17] studied the electron transfer in four different organic substances 
at a dropping mercury electrode (DME) and found that the transfer coefficient 
accomplished, within the experimental error, Eq. 5. On the other hand, Gileadi et 
al. [18] carried out systematic studies on the hydrogen evolution reaction on the 
DME. They found that the Tafel line obtained for that reaction remained 
perfectly straight over a potential range of 0.6-0.7 V corresponding to a variation 
in 4-5 orders of magnitude in the current function. This represents the larger 
potential range studied without any interference of parallel reactions and 
correcting the diffuse double layer according to the Frumkin´s theory [19]. The 
result was repeatedly observed at different temperatures so that the authors came 
to the conclusion that the transfer coefficient was strictly independent of the 
potential. Analogous results were found by the same authors [20] for the 
reduction of bromate on a DME. Thus, it can be concluded that the linear 
dependence of β with the potential resulting from assuming a potential 
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dependence on the activation energy, is, at least until the moment, a controversial 
unresolved problem from the point of view of the experimental evidence. 
It has been always admitted that the potential dependence of the reaction rate is a 
consequence of the linear (according to Frumkin) or quadratic (according to 
Marcus) dependence of the activation energy on the potential, where the 
consequence of this idea is that β varies linearly with the potential. These 
theories do not take into account the electronic structure of the electrode. A more 
general approach to the problem has been made by taking into account the 
electronic states in the electrode close to the Fermi level as well as the density of 
electronic states. The general equation deduced can be approximately solved for 
three different potential ranges (see for instance Chapter VI in [4]).  When the 
condition λ >> |e0η| is accomplished, where e0 represents the charge of the 
electron and η the overpotential, the classical Butler-Volmer behaviour is found. 
At very large overpotentials a limiting current is predicted and at a third potential 
range an erfc relation between j and η is found. 
All these ideas are valid as long as the electroactive substances are of ionic 
nature and, therefore inner- and outer- solvation shells are present. Nonetheless, 
many of the most interesting electrochemical reactions of practical interest, like 
the hydrogen evolution reaction, or the hydrogen oxidation, or water oxidation to 
hydrogen peroxide or oxygen, or oxygen evolution, or electropolymerizations, or 
electrosynthetic routes to obtain different organic or inorganic substances, etc., 
are characterized by the presence of electroactive substances in the OHP or in the 
adsorbed layer (IHP = Inner Helmholtz Plane) which are electrically neutral in 
nature and, therefore they can only weakly interact with the solvent molecules 
through Van der Waal´s interactions or by formation of hydrogen bridges, if 
possible. In these cases, the free energies associated to the reorganization of the 
solvation shell cannot be influenced by variations in the interphasial potential 
difference. Also the rates of interfacial electron transfers through the so called 
weakly π-conjugated spacers [21] follow typical current-potential relationships 
with values of the standard rate constant that decrease exponentially with the 
spacer length. The authors of this work studied charge transfers through 
separations of up to around 25 Å, i. e., a distance longer than the width of the 
double layer at which the electric field acting in the double layer region would be 
rather weakened due to the shielding effect exerted by different molecules or ions 
interposed between the electrode surface and the electroactive center. However, 
the electrochemical processes above mentioned are also characterized by 
exponential relationships between current density and overvoltage, whose 
theoretical justifications are based in the ideas developed by the authors cited. 
Nonetheless, it would be difficult to argue that the activation energy, expressed 
as a function of the reorganization energy of the solvation shell, is a function of 
the potential difference through the double layer, for electroactive groups that 
can be located as far from the double layer region as 25 or more Å. 
In order to try to overcome some of the inconsistencies above discussed, a new 
approach is made to the deduction of the fundamental equation of the 
Electrochemistry based in considering that the potential dependence is introduced 
in the rate equation by the potential dependence of the frequency factor, Z(E), 
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instead by considering that the activation energy is a function of E. Thus, 
according to this, the new expression for the electrochemical rate constant can be 
given by: 
 

( ) 



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

 ∆
−=

∗

RT

G
EZk exp κ  (6) 

 
Z (E) is obtained in this work following a classical statistical mechanics 
treatment. The approach made allows to obtain the exponential relation between 
the current, j, and the overpotential, η, within the potential range in which Tafel 
behaviour is expected, i. e., only the situation is considered in which the 
condition λ >> |e0η| is accomplished. The energy of the electroactive substance 
participating in the charge transfer process is considered by defining the partition 
function of the reacting particles in the Outer Helmholtz Plane (OHP) and 
considering the contribution made to it by the electrical energy when the 
electroactive substance enters the interphasial region (which is equivalent to 
express the free energy of the molecular redox levels in electric unities). In this 
way, an expression for the frequency factor (Z) in the rate constant equation is 
obtained in which Z results to be an exponential function of the potential. The 
new equation for Z is demonstrated to lead to the fundamental equation of the 
Electrochemistry. The activation free energy, ∆G*, will be calculated by the 
dynamics of solvent relaxation, respecting the model of the activated complex, 
like in the case of the Marcus-Hush theory, but the energy of the redox couple, 
and, therefore the energy of the activated complex is supposed not to be 
influenced by electric field acting inside the interfacial region. On the other hand, 
the theory which leads to the theoretical description of the transmission 
coefficient, κ, is discussed in other works (see, for instance [3] and References 
therein), since the model discussed in this work is valid for adiabatic charge 
transfer processes in which κ = 1. 
The following sections are dedicated to theoretically justify the exponential 
dependence of Z with the interfacial potential, and, based on the same, to deduce 
the so-called fundamental equation of the electrochemistry [15] within the 
potential range in which a Butler-Volmer behaviour is experimentally found. In 
order to reach this goal a phenomenological mechanical statistic approach is 
followed. 
 
 
The definition of Z as the thermal velocity of the reacting particles [[[[22]]]] 
(electroactive substances) 

The system to be studied is of the type: O + ne → R, where the electroactive 
substances are in much smaller concentrations than the supporting electrolyte, so 
that the whole migratory transport can be supposed to be carried out by the ions 
components of it. On the other hand, the total concentration of ions in the 
electrolyte is high enough to admit a Helmholtz rigid double layer model to be 
valid, which supposes to admit a variation linear of potential across this region. 
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Furthermore, no specific adsorption of any species present in the solution takes 
place. The initial situation of the system is a potential difference corresponding to 
the formal potential. E0´, at which a homogeneous profile for the concentrations 
(no variation of the concentrations of O and R with the distance x to the electrode 
surface) will prevail, and where the average energy of the redox molecular levels 
is equal to the energy of the Fermi level in the electrode. Likewise, the rate of the 
diffusive transport of the electroactive substances is supposed to be much higher 
than the rate of the charge transfer reaction so that the initial concentration 
profiles will be approximately maintained throughout the whole potential range 
of the study. The distance x is taken as perpendicular to the electrode surface 
(supposed to be an ideal plane), with x = 0 taken just in that surface. Figure 1 
shows the linear variation of the potential difference across the rigid double layer 
formed between the electrode surface and x2, i. e., the distance at which the Outer 
Helmholtz Plane (OHP) is located. Once the electroactive substances are already 
situated at the OHP border, after reaching this position by diffusive transport, 
they can be supposed to behave like an ensemble of gas particles with respect to 
any infinitesimal approximation towards the electrode surface. In fact, the 
movement of the particles will still be by diffusion, but on distances as short as 
those considered, diffusion converts in a chaotic shift of the individual particles 
similar to the experimented by the molecules of a gas whose pressure diminishes 
when moving towards a wall. Therefore, the particles composing the 
electroactive substances, once they are situated in the OHP carry out a pulsing 
movement that allow them to repeatedly invade the double layer, where due to 
their electric charges and to the electric field acting in that region, a change in the 
values of the free energies of the redox couple takes place, which is proportional 
to the deep of their penetration inside the interphase. 
 
 
 

The term 






 ∆
−

∗

RT

G
exp , where 

4

λ
=∆ ∗G , and λ = energy of reorganization of the 

solvation shell, expresses the probability of reaching the situation of the activated 
complex, i.e., of creating electronic levels in the electroactive substances, able to 
accept or to transfer electrons from or towards electronic levels of the same 
energy in the electrode and can be calculated, according to the Marcus expression 
[7] as λ/4, where λ represents the reorganization energy of the solvation shell of 
the electroactive substance. 
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Figure 1. A representation of the rigid double layer. The vertical line at the left shows 
the cut of the electrode surface, whereas the vertical line at right at a distance x2 from 
the electrode surface is the cut of the Outer Helmholtz Plane (OHP). The distance a to 
the surface is the critical point that the electroactive substances must reach in order to 
make possible the tunnelling of electrons from or towards the electrode. In addition to 
reach this position, the electron tunnelling, from or towards the electrode, would take 
place whenever the solvation shell would adequately reorganise to allow the electron to 
find free levels in the electroactive substance or to permit electrons belonging to it to 
reach unoccupied levels of the same energy in the electrode. From the plot, it can be 

seen that: tanϑ =
a x

  
22 −

Φ′∆
=

∆Φ

x
, and, consequently: ∆Φ








=Φ′∆  

x

a
 -1  

2

. 

 
 
These levels will be produced as consequence of thermal fluctuations in the 
solvation shells. The thermal fluctuations in the solvation shells are supposed in 
the present approach not to be influenced by the distance of penetration of the 
electroactive substances inside the double layer region since the thermal 
fluctuations in the solvation shell should be a function of the electric charge, the 
chemical nature of the electroactive substance and the temperature and these 
magnitudes will not be changed when the electroactive center is inside the 
interphasial region. Thus, the matching of the electronic energy levels in the 
redox system with the electronic levels in the electrode, which is necessary in 
order to induce a no-radiative electron transfer, is accomplished both, by the 
fluctuations in the solvation shell and as consequence of the linear variation of 
the electric field inside the double layer region. On the other hand, since the 
components of the redox couple (or, at least one of them) are electrically 
charged, they will interact with the electric field existing in the interphasial 
region (which varies linearly along it) with the result that their free energies will 
linearly vary in an amount expressed by: ∆G = z F ∆ϕ, where z is the electrical 
charge (or oxidation number) of the electroactive substance, F the Faraday 
constant and ∆ϕ the absolute potential difference between the electrode surface 
and the point inside the double layer in which the charge transfer takes place. 
Once the charge transfer has taken place the oxidation number of the 
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electroactive substance will change in ± 1 and, consequently its free energy will 
proportionally change according to the deep of penetration of the electroactive 
substance inside the double layer. Thus, introducing the term: z F ∆ϕ = (zOx - 
zRed) F ∆ϕ = ∆GRed - ∆GOx = ∆(∆G) = f (∆ϕ) is the form in which the energetic of 
the molecular redox levels is taken into account in the present approach. The 
complete treatment of the problem should also consider the populated and free 
electronic levels of the electrode around the Fermi level, which are those which 
are involved in charge transfer events. The partial solution of the problem for the 
potential range in which Butler-Volmer behaviour is found gives rise to the 
corresponding linear relation between the logarithm of the current and the 
potential, which is the mostly expected result in almost any experimental study 
made under the application of not extreme potentials, where, commonly parallel 
reactions like the own oxidation or reduction of the molecules component of the 
solvent or of the ions forming part of the supporting electrolyte, take place. This 
term will be multiplied by the probability of reaching a point inside the double 
layer close enough to the electrode surface to make possible the electron 
tunnelling from or towards it (where the probability for electron tunnelling is 
contained in the transmission coefficient, κ, which is the unity for the so called 
adiabatic electron transfers, the only ones considered in this treatment). Once the 
electroactive substances are located at the adequate distance (a distance at which 
the energy of the molecular levels in the redox system equals the energy of the 
first free or occupied levels in the electrode, at E = E0´), the proportion of them in 
which electronic levels are created able to receive electrons of the same energy 
from the electrode, or to transfer electrons to vacant levels of the same energy in 
the electrode is expressed by the exponential of the activation energy already 
written. The activation energy can be estimated by following the treatment of 
Marcus on polarization fluctuations in the solvation shell of the electroactive 
substances. 
Such a critical distance will be reached a number of times by time and surface 
unities, which for a substance situated in front of a wall (and behaving as a gas, 
after reaching the position in the OHP by a diffusion process) is calculated by 
means of the expression [22]: 
 

  )(v N  
0

x dxvfZ xW ∫
∞

=  (7) 

and using the Boltzmann equation for the velocity distribution [22] in the 
direction x: 
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the resulting equation can be solved to give an expression for Z showing the 

correct dimensions, cms-1, 
2/1
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constant, T, the absolute temperature and m the mass of the particle concerned). 
This is the expression for the frequency factor for the electrode reaction first 
derived by Hush and Evans [10] and from which a maximum value for the 
charge transfer rate constant of around 104 cms-1 (for ∆G* = 0) can be estimated 
(with changes associated to the change of value of m = molecular mass/number 
of Avogrado). 
 
 
The energetic of the molecular redox levels and of the electronic levels in the 

electrode 
In order to make possible the charge transfers towards or from the electrode the 
electroactive substances must come close enough to the electrode surface to 
make electron tunneling possible. This means that the electroactive substances 
will move in a perpendicular direction to the electrode surface, which is labeled 
with x. By taking into account that the component in the direction x of the kinetic 

energy of a particle of mass m can be written as: 2

2

1
  xc mvE = , Equation (8) adopts 

the following form:  
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B

c

2/1

Bπ
xvf  (9) 

 
An analogous equation can be written for a particle component of an 
electroactive substance, located at the distance x2, i. e., at the OHP, from the 
electrode surface and moving to it, invading in this way, the interfacial region 
where an electric field is acting, whose strength is a linear function (for the rigid 
double layer model admitted to be valid in this case) of the depth of penetration 
of that particle. In that case, the distribution of velocities would be influenced by 
the presence of an electric field, i.e., the total energy would present an electric 
component (Eel) which will be proportional to the charges of the electroactive 
substances involved, i. e., to the oxidation numbers zOx and zRed times e0. This 
electric energy is proportional to the electric charge of the particle entering the 
double layer region and to the value of the electric field strength in the point 
reached by the particle. In the case that the particle considered would be 
electrically neutral, but bonded to another atom, the electrical charges will 
separate once it invades the interphasial zone. The electric field varies with the 
electrode potential and so do also the values of ∆GRed and ∆GOx, which will 
change with the electrode potential and with the position the redox components 
reach inside the double layer. Thus, considering the electrical energy of Ox and 
Red in the classical statistical mechanics approach is equivalent to introduce the 
potential dependent precursor and successor energies in the charge transfer 
processes. Under the influence of this new energy component, the velocity 
distribution would change. The expression for the new distribution, with Etotal = 
Ecx + Eelx, (where Ecx = component along x of the kinetic energy of the particles 
of the electroactive substance and Eelx = component along x of the electric 
energy) can be written by taking into account that if the energy is a sum of 
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independent contributions, the partition function is the product of the partition 
functions of each energy form [22]. Thus: 
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The expression for the electric contribution to the probability can be deduced as 
follows: 
The Boltzmann distribution is defined as the fraction of molecules, pi, from an 
ensemble N, existing in the state i: 
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where q represents the molecular partition function. It is necessary to remember 
that the molecular partition function carries all the thermodynamic information 
about a system, so that the energetic conditions corresponding to the precursor 
and successor states in the charge transfer reaction will become a result of the 
mechanical statistical treatment [22]. For the case of a charged particle, which, as 
consequence of thermal fluctuations can reach different positions inside the 
double layer region, the partition function can be admitted to coincide with that 
calculated for a situation in which a molecule can occupy an infinite number of 
equally spaced non-degenerate energy levels, coinciding with any infinitesimal 
variation of the “penetration” of the charged particle inside the double layer, i. 
e.,: 
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and the Boltzmann distribution can, therefore, be written as follows: 
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or, for εi<< kBT,  
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Making εi = ze0dE = Eel, Eq. 15, converts in pi = pel = dE exp0
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
−

Tk

E

Tk

ze

B

el

B

, which 

represents the contribution to the energy distribution made by the electric energy, 
as included in Eq. 11. 
On the other hand, when the total energy of a molecule arises from the sum of 
several different, independent sources (in this case, thermal fluctuations plus 
electric interaction of the electroactive particle “invading” the interfacial region 
with the electric field acting inside it), the total partition function is a product of 
the partition functions for each energetic mode. Thus, ptotal = pthermal x pelectric, with 
εel = -ze0∆ϕ, where ∆ϕ represents the Galvani´s potential difference across the 
double layer. Since the real magnitude we are able to measure is ∆ϕ + E*, where 
E* represents the unknown absolute or Galvani´s potential difference across the 
interface chosen as reference then we will write the electric potential difference 
as a function of E instead of ∆ϕ. In this way Eq. (11) becomes justified. 
 
 
The frequency factor for the oxidation process 
With Eq. (11) as the expression for the new distribution, the frequency factor, 
i.e., the number of times by time and surface units, in which the charged particle 
is able to reach a point in the double layer where the tunneling of electrons will 
be effective whenever adequate energetic levels for the electron exist, must be 
written by taking into account the effective density of electronic states, ρM(ε) 
(where ε = E – EF), near the Fermi level (EF), which is assumed to be 
independent of the energy. In addition to this, it must be taken also into account 
the probability of finding in the electrode an occupied electronic state of energy ε 
with respect to EF when studying a reduction process, or free electronic levels of 
energy -ε in the electrode for the oxidation process. Such probabilities are given 
by the products: ρM(EF) f(ε) and ρM(EF) [1 - f(ε)] respectively, where: 
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(16) 

 
For the case of an oxidation process, an electron occupying the HOMO (Highest 
Occupied Molecular Orbital) of Red can only be transferred to the electrode if an 
empty state of the same energy is available in it. The probability of finding such 
an empty state is given by: ρM(ε)[1 - f(ε)]. Therefore, the frequency factor for an 
oxidation process taking place under adiabatic conditions (κ = 1) can be written 
as follows: 
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where, it has been substituted, for an oxidation process: Eel = -ze0∆(∆ϕ) and dEel 
= -z e0 d(∆ϕ) 
The integration limits are 0 and +∞ for the integral of the kinetic component, 
since only the movement in the positive direction along x of the particles 
approximates them to the double layer. Likewise, the integration limits for the 

integral on the electric energy component are ( ) 







−∆∆








−

02

1
zex

a ε
ϕ  and -∞, 

where the fraction -
0ze

ε
 indicates the energetic levels above the Fermi level 

which can accept electrons from the reduced substance in the electrolyte, but 
expressed in potential unities and ε = E-EF, with EF = Fermi level. The limit -∞ 
implies a situation in which the difference in energy between the occupied levels 
in Red and the unoccupied levels in the electrode is as high that no charge 
transfer event can take place from Red to the electrode, since every level in it is 

occupied. The integration limit ( ) 







−∆∆








−

02

1
zex

a ε
ϕ  accounts for all the values 

of ∆ϕ and a in which the levels around the Fermi level in the electrode and the 
energy levels in the redox couple are of the same energy, allowing no radiative 
electron transfers to each other. Since the initial situation in the process is that 
created at the formal potential, then ∆(∆ϕ) = ∆ϕ - ∆ϕe = E – E

0´, where ∆ϕe and 
E0´ are the absolute or Galvani´s equilibrium potential difference across the 
double layer and the measured formal potential and the applied potential, 
respectively. The kinetic equations will be written as a function of the 
concentrations of the electroactive substances instead of their activities, thus the 
difference which should be considered is: E - E0’, where E0’ denotes the formal 
potential and E the applied potential. Thus:  
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−  (18) 

 

where the product of [E - E0’]e0 expresses the driving force for the electron 
transfer from Red towards the electrode. 
 
Making the frequency factor the product of the integrals I, J and K: 
Z = IxJxK 
with 
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This integral can be solved by resorting to following change of variable:  
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2
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Now, the integral I can be written in the following way: 
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where the integral is tabulated: ( )dx ax- exp x 
0

2n
∫
∞

, and, for n = 1, the solution is: 

a2

1
, and for a = 1, the solution is ½. Thus: 
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The integral J can be solved in the following way: 
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where the second exponential factor depends on ε and, therefore it must be 
included in the integral K. 
In establishing the integration limits for the integral with respect to the electrical 
part of the partition function an introduction is made of the energy of the 
molecular redox levels and of the populated and empty electronic levels around 
the Fermi level in the electrode and therefore establishing the energetic 
conditions under which interphasial charge transfer can take place. 

Again, ( )0

2

)
x

a
 - 1( ′− EE , is the fraction of the total absolute potential difference 

acting at the critical distance, a, which the electroactive substance must penetrate 
in the interphasial region in order for the electron tunnelling to become possible, 
i. e., in order to reach the situation in which occupied electronic levels in the 
reduced substance reach an energy equal to the energy of the free electronic 
levels in the electrode. In this way, a non radiative electron transfer can take 
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place from the occupied molecular orbitals of Red towards unoccupied electronic 
levels of the same energy in the electrode. z, represents the difference in the 
oxidation numbers of the Redox couple, i.e., z = zO - zR  normally would be equal 
to 1 (or, more generally, nβ) since the probability for two electrons to 
simultaneously tunnel is extremely small. 
 
The solution of the integral K can be obtained in the following way; 
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(25) 

The integration limits are +∞ and -∞ because the integral has to be performed 
over the conduction band of the metal and the integrands become negligible far 
from the Fermi level. 
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(26) 

On the other hand, the density of states, ρM (ε) varies slowly near the Fermi level, 
and, in consequence, it can be taken as constant, ρM (EF), and put in the front of 
the integration sign: 
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(28) 

and making the change of variable: 
Tk

  x
B

ε
= ; dε = (kBT) dx, and substituting: 
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The integral between the brackets can be solved for the most common case, i. e., 

for β = 
2x

a
= 0.5. In that case, dividing numerator and denominator in the 

integrand by 





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
x

x

a
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The integral in the brackets is tabulated with the solution: ( )[ ]2/ arctg 2 xe , and, 
therefore: 
 

K = ( )( )TkE BFρ ( )[ ]+∞

∞−

2/ arctg 2 xe = ( )( )TkE BFρ 





−

π
0

2
2  = 

 
= π ( )( )TkE BFρ = K (31) 

 

The general solution for Eq. 29 is given in Appendix 1. Thus, making a/x2 =β, 

the resulting integral: dx
e x

∫
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∞− +
 

e  1 x

β

 for 0≤β≤1, has the solution:
βπ
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 sin
 and, 

therefore, the general solution for K is: 
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For β = ½, sin βπ = sin π/2 = 1, 
βπ

π

 sin
= π, and the solution coincides with the 

value of K given in Eq. 31. On the other hand, for values of β = 0.1, 0.2, 0.3, 0.4, 

0.6, 0.7, 0.8, 0.9, the fraction
βπ

π

 sin
, will present the values: 3.24π, 1.7π, 1.24π, 

1.05π, 1.05π, 1.24π, 1.7π and 3.24π, respectively. In general, the result is that the 
frequency factor shows a double dependency on the symmetry factor, β, one 
linear an another exponential. According to this result, the frequency factor and, 
therefore, the rate constant will reach higher values the closer to 0 or to 1 β is. 
Finally, the frequency factor can be obtained according to: 
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(33) 

where: β=  
x

a

2
 and, according to Fig. 1: 0 ≤ β≤ 1 

The so called symmetry factor,β, is now an dimensionless coefficient, which 
expresses the fraction of the whole width of the interphasial region, into which 
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the electroactive substances must enter, in order to make possible the electron 
transfers. On the other hand, this factor combines with the probability factor 
expressed by: exp(-∆G*/RT) to give the total frequency of the charge transfers, 
or, more adequately expressed, the charge transfer specific rate. Again, since a < 
x2, it results that: 0≤ β ≤ 1. 
Substituting now Eq. (32) in Eq. (6), the expression for the rate constant for the 
oxidation of R, and remembering that for the oxidation process, z = zO – zR = nβ 
(nβ = number of electrons simultaneously transferred) becomes:  
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The frequency factor for the reduction process 

In a similar way, the value of the rate constant for the reduction process must 
take into account the probability of finding electrons in the electrode with the 
same energy as the molecular free levels in Ox, which is expressed by: ρM(ε). 
Thus: 
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and the term )E(Z dRe  is given by: 
 

( ) ( )
( )

  d f )( d 
Tk

 e z
 exp 

m 2

Tk
  )(

0

0

2x

a
0

B

0

2/1

B
Re ∫ ∫

∞+




















−−

+∞

∞−

′
∆







 ∆
−








=

ze
EE

M

B

d
Tk

ze
EZ ε εεερϕ

ϕ

π
 (36) 

 

where for a reduction process Eel = ze0∆ϕ. The limit +∞  for the value of the 
potential describes a situation in which the electronic levels in the electrode are 
unoccupied and, therefore, no electron transfer will be possible from it to the 
electroactive substance Ox, at any distance it could be located inside the double 
layer, whereas -ε/ze0 represents the levels of electrons in the metal more 
energetic than EF from which electrons can be transferred to Ox in the electrolyte 
to form Red. 
Thus, ZRed = IxJ´xK´ 
The integrals, J’x K´, in Eq. (26) can be solved following the same steps as 
before:  
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and remembering that  z = nβ 
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where the second exponential is a function of ε and, therefore, it must be 
included in the calculation of K´. 
Thus:  
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and: 
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Eq. (43) is the same as Eq. (28), and, therefore, its solution (Appendix 1) is: 
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So that the expression for ZRed(E) = IxJ´xK´= 
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or, substituting Eq. (45) in Eq. (35):  
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By defining now the values of the rate constants at the formal potential, i. e., for 
E = E0’: 
 

( ) 






 ∆
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


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∗

RT

G
 exp 

m 2
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 T)(k  

 sin
  Ox

2/1

B
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0

π
ρ

βπ

π
κ FOx Ek  (47) 

and: 
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







 ∆








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m  2
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π
ρ

βπ

π
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where κ is dimensionless, ρM(ε) is given in number of electronic levels/eV and 
the energy kBT can be expressed in eV, so that the rate constant has the 

dimensions of the term 
2/1

B

m2

Tk









π
, i.e., cms-1, those, therefore, of a 

heterogeneous first order reaction. The expressions of k0 given in Eqs. (47) and 
(48) coincide with those deduced previously [4] starting from the Marcus-Hush 
formalism (where those expressions were derived only for β = ½) but adding the 

presence of the factor
2/1

B

m2

Tk









π
. 

Eqs. (33) and (46) can now be written as follows: 
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and 
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
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
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=

β
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At E = E0´, for equal initial concentrations of Ox and Red, it results the so-called 
standard rate constant k0: 
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and the frequency factors for E = E0´would be: 
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Thus, the frequency factor measured at the formal potential includes also a 
dependence on the symmetry factor, β. Equation 51a allows an estimation of 
( ) 0′

EZ by taking into account values of ( )FEMρ ≅ 0.3 levels/eV (for instance, for a 

gold electrode), ( )TBk  ≅ 0.0256 eV at 298 K, β = ½, and, therefore, sin βπ = sin 

π/2 = 1, and 
2/1

B

m  2

k









π

T
≅ 5000 cms-1 for ions derived from the first transition 

series, gives rise to a maximum value for k0 of around 200 cms-1 (for ∆G* = 0) 
and the same value multiplied by 3.24 (648 cms-1) for values of β  = 0.1 and 0.9. 
These equations for k0 deduced from the supposition that the frequency factor 
instead of the activation energy is potential dependent suppose a new definition 
for them and predict a double temperature dependence of k0, through the 
presence of the temperature in the exponential factor and through the factor T3/2. 
In addition to this, the preexponential factor is a function of the symmetry factor. 
Furthermore, Equations (51) allow to do a theoretical estimation of the values of 
k0 by taking into account calculations of ∆G* as λ/4 and introducing the values 
of the effective density of electronic states near the Fermi level of the electrode, 
which is supposed to be independent of the energy, ρM (EF), the working 
temperature and the molecular mass of the electroactive substance m.  
 
 
Current-potential characteristic for a redox process 

A substitution of the expressions (51) in Eqs. (33) and (46) leads to:  
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(52) 

and 
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

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
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 β
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′
β
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B

0
00

dRe
 (53) 

Finally, the expression of the rate equation in electrochemical units for the 
process: Ox + n e ↔ Red can be written by making use of the Faraday law: 
 

====  t)(0, C k - t)(0, C )(k  
nF

j
  

nFA

I
  ORedROx Ev  (54) 

 
where CR (0,t) and CO (0,t) are the concentrations at any time of Ox and Red in x 
= x2, i. e., in the OHP.  
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or, by multiplying by the Avogadro number numerator and denominator of the 
arguments in the exponentials inside the brackets, the equation for the current 
density, j is: 
 


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)E-(E F ) - (1n  
 exp t)(o, C  nFk  

0

R

0

O
0

ββ ββ  (56) 

 

Eq. (56) is the called [15] complete current-potential characteristic, used in the 
treatment of any problem in heterogeneous charge transfer kinetics. It can easily 
be transformed in the Butler-Volmer equation. 
 
 

A new definition for the symmetry factor, ββββ 
The coefficient β resulting from the above deduction is defined as the fraction of 
the whole width of the double layer region, which the electroactive substances 
must come into in order to allow the tunnelling of the electrons from them to the 
electrode or from the electrode towards the electroactive substances located at the 
OHP, i. e., β=a / x2. This definition coincides with one of the formulations of β 
made by Bockris [23], i. e.: 
 

layer double  wholeacross Distance

barrier activation  theofsummit  layer to double across Distance
   =β  (57) 

 

Again, β can be defined from Eq. (45) by taking logarithms and deriving: 
 

T
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 (58) 

or: 
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F n
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∂

∂
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 (59) 

 

with the meaning that β is proportional to the rate of variation of the logarithm of 

the frequency factor with the potential. For β = 0.5,  
*E  ,T

Red

E

(E)ln Z 
 









∂

∂
 = 

 

Fn

RT

β

β
− ≈ - 19.48 nβ V

-1 , or: 
∗=










∂

∂

E ,C25T

dRe10

E

Zlog

�

.= 8.4nβ V
-1, predicting, for 

β = constant = 0.5, a variation of ZRed of 8 orders of magnitude for 1 Volt of 
variation in the potential, or one order of magnitude for each 120 mV of variation 
in the potential. 
In a similar way, from Eq. (32): 
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*E ,

Ox

E

(E) ln Z 
 

F n

RT
  )1(

T










∂

∂
=−

β

β  (60) 

 
An extension of this treatment could include the possibility that, the penetration 
distance, a, could be a function of the overpotential (a = f(η)), which would lead 
to a value of β linearly dependent of the applied potential. 
 
 
Theoretical estimation of the values of k

0
 for some outer sphere electron 

transfer reactions 

Eqs. (47) and (48) (as well as Eqs. (51)) predict that the exchange rate constant 
for outer-sphere electron transfer will depend on the nature of the metallic 
electrode utilised in the study through the presence of ρM (EF), the density of 
states at the Fermi level. This result is the same as the found in other works 
before (see, for instance Eq. 6.19 in Ref. [4], or Eq. 8.6 in Ref. [24] .The density 
of electronic levels at the Fermi level is rather similar in different metals [25], 
with values of 0.27, 0.21, 0.27, 0.27, 0.42, 0.63 and 0.50 levels/eV, for Au, Cu, 
Ag, Fe, Hg, Pb and Pt, respectively, at T = 298 K, so that most of the changes in 
k0 induced by variations in ρM(EF) would be comprised within the range of the 
experimental errors made during the electrochemical measurements. This can 
explain the constancy found of the experimental values of k0 measured for outer-
sphere electron transfers on different metals, although this is a matter under 
discussion [2]. 
It is possible to obtain theoretical values for k0 from Eq. (51), by making use of 

the values of λ0, λi and ∆G*th = 
4

0 iλλ +
 given in Ref. [16] and the values of 

ρM(EF) deduced from the equations given in Ref [25]. For instance, the 
experimental value of k0 measured for the couple [Cr(H2O)6]

+2/+3 on the 
Dropping Mercury Electrode (DME) at T = 298 K was 1.4x10-5 cms-1 [27] and β 

= 0.45. Therefore, the factor π
π

π

βπ

π
 1.01  

0.45sin 
  

 sin
== . Using now the values: 

ρM(EF) for Hg at 298 K = 0.42 levels/eV, (kBT) = 0.026 eV for the temperature 

cited , 
2/1

B

m  2

k









π

T
= 

2/1

M  2

T 









π

R
= 4963 cms-1 for m = 

AN

/ 160 molg
 (where NA = 

Avogadro´s number) in the ion concerned and a value of ∆G*th = 0.432 eV from 
Ref. [16] and applying this values in Eq. (51), a theoretical value for k0 is 
deduced of 1.1x10-5 cms-1 rather close to the experimental one. 
Other calculations can be made taking the values of Hale for ∆G*th [16] and 
ρM(EF) [25] and applying Eq. (51). The following cases show higher 
discrepancies between the experimental and the theoretical values of k0 (for 
instance in [V(H2O)6]

2+/3+ k0exp = 4x10
-3, k0th = 3.5x10

-5, in [Mn(H2O)6]
2+/3+ k0exp 

= 6x10-4, k0th = 2x10
-6 , in [Fe(H2O)6]

2+/3+ k0exp = 5x10
-3, k0th = 1.4x10

-5 , in 
[Co(H2O)6]

2+/3+ k0exp = 1.8x10
-7, k0th = 4.2x10

-5 , all values in cms-1). Nonetheless, 
these discrepancies can be attributed to the fact that many of the experimental 
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results should be corrected with respect to the presence of a coulombic double 
layer effect [26]. 
 
 

On the meaning of the term 
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An interpretation of the term 
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where the term: 
h

TkB  has dimensions of s-1 (at T = 298 K this term presents a 

value of 6.2 x 1012 s-1) and 
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h
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


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Tπ
 has dimensions of a length (for [Fe 

(H2O)6]
+3/+2 this term has a value of 7.9 x 10-10 cm, so that the product gives: 
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T
= 4898 cms-1) and, considering that the partition function for a particle 

that experiments a translation in a unidimensional box of length a is given [28] 
by: 
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then: 
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On the other hand, remembering that for a homogeneous charge transfer reaction, 
the frequency factor, Zhom is given by: 
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and substituting characteristic values in Eq. (65), the ratio between both 
frequency factors can take values ranging between around 3 to 5x10-11 cm. 
In addition to this, the fact that the frequency factor is an exponential function of 
the distance of penetration into the double layer region can be put in relation with 
results obtained on the distance dependence of the preexponential factors found 
after Arrhenius analysis of rate constants measured in electron transfer kinetics 
through alkanethiol monolayers on gold [29]. 
 
 
Conclusions 
The fundamental equation of the electrochemistry has been derived following 
classical statistical mechanist arguments, going from the supposition that the 
frequency factor, instead the activation energy, is the magnitude dependent of the 
potential. Such potential dependence of the frequency factor has been derived by 
obtaining the Boltzmann distribution of velocities existing inside a space region 
in which the whole energy of the particles is the sum of a kinetic and an electric 
component. A new definition of the coefficient β results from the treatment, as 
well as a new theoretical description of the standard rate constant k0, whose 
values, for electron transfer events studied under adiabatic conditions, are 
coincident with those obtained from the Marcus- Hush theory.  
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APPENDIX 

Solution of the integral: dx
e x

∫
∞+

∞ +- x
 

e  1

β

 for: 0 ≤ β ≤1. 

The above integral can be solved by resorting to the calculus of residues [30]. 
The convergence of the integral at the limits ± ∞ is made sure by the limits 
imposed to the value of β. The integral can be solved in the complex plane by 
replacing the variable x by the complex variable z, where z = x + iy, and 
extending the integration around the contour shown in Fig. A.1.  
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Integration to the limit z → ∞ in the real axis leads to the solution wanted. In 
addition to this, a return path along y = 2π has to be taken into account in order to 
leave the denominator of the integrand invariant. Thus, in the complex plane: 
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e e
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βπβββ

 (A.1) 

 

where, for z = x + 2πi, i2x e e πββ =ze . 
Equation A.1 can be rewritten by considering that the factor e2βπi = constant: 
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The contour integral in Eq. A.2 can be evaluated by calculus of residues as: 
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Thus, by combining (A.2) and (A.3): 
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In order to obtain the residue, the integral can be rewritten by resorting to the 
change of variable: ex = z2; 2 ln z = x; dx = 2 z -1dz = 2 e-lnz dz. Thus: 
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A pole is localised in ez = ex eiy = -1, i.e., for z = 0 + iπ. 
According to the theorem of the principal value of Cauchy: 
Residue = (value of the integrand in the singularity multiplied by z minus the 
value of z in the singularity, which is i) = ( )( )i- integrand lim z

iz→
. Thus: 
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that ln z = i arg z,  ( ) ( ) i
iz 2

  z arg i lim  zln  lim
iz

π
==

→→
(since, for z = i, arg z =π/2). In 

addition, ( ) 2i  i  z lim =+
→iz

, and eπi = -1; 
ii

e 2
-

2 e-  i  
ππ

== : 

= 
( )















 −

→ i

e
i

iz  2
2 lim

2
12

π
β

 = 
i

e
i

i 2
-

 e 
π

βπ

( )( )11 −−  = - ( )i
i

i

e
i

e π
πβπ











2

-

e  = Residue (f,i) = -eβπi 



J.G. Velasco / Portugaliae Electrochimica Acta 25 (2007) 293-318 

 317

and, coming back to Eq. A.4: 
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According to Moivre´s equations: 
eβπi = cos (βπ) + i sin (βπ)  
e-βπi = cos (βπ) - i sin (βπ)  

and, therefore:  
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which is the expression used in Eq. (32)  
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