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Abstract 

The complete theory corresponding to a CE mechanism when applying cyclic 
chronopotentiometry to a spherical electrode of any size is developed. The influence of 
several variables on the transition time ratios, such as the electrode radius, rate constants 
of the homogeneous chemical reaction and current density, is discussed. A simple and 
practical criterion based on the variation of current density applied to the electrode is 
proposed for the detection of a CE mechanism.  
 
Keywords: CE mechanism, cyclic chronopotentiometry, spherical electrodes, transition 
time ratios. 

 
 

Introduction 

The study of a CE mechanism, in which the charge transfer reaction follows a 

homogeneous chemical reaction, has been reported in the literature using several 

chronopotentiometric techniques such as constant current chronopotentiometry 

[1], chronopotentiometry with programmed current [2-4], and alternating current 

chronopotentiometry [5], and with planar and conventional sized spherical 

electrodes. In these techniques, only one current signal is applied to the electrode. 

However, electrochemical techniques in which the electrical perturbation 

(potential or current) is applied more than once are of great interest both 

analytically and kinetically [6,7]. Thus, a more exhaustive study of this type of 
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processes with kinetic complications can be made using cyclic 

chronopotentiometry, a classical electrochemical technique consisting of the 

application of several successive current steps of alternating signs to a 

determined electrode without the balance being recovered in the electrode-

solution interphase. This technique was introduced by Herman and Bard in 1963 

[8], who applied it to plane electrodes, and its use has been shown for the 

qualitative and quantitative study of electrode processes [9-13]. The technique 

was extended to conventional sized spherical electrodes in references [14-16]. 

In this paper, we have developed the theory concerning a CE mechanism in 

cyclic chronopotentiometry for spherical electrodes of any size, including planar 

electrodes and spherical ultramicroelectrodes as particular cases. 

From this general theory, we analyse the response obtained in cyclic 

chronopotentiometry for a CE process and we discuss the influence of several 

variables, such as the electrode radius, on the transition time ratios ( 1step j stepτ τ ), 

the evolution of which with the number of current steps applied can be used as a 

criterion to establish the presence of kinetic complications. We have proved that 

the characteristic behaviour of the transition time ratios corresponding to a CE 

process with the chemical rate constants can be also attained by changing the 

density current applied, something that is very easy to do experimentally. We 

also indicate how to obtain kinetic information of the process, and we conclude 

that cyclic chronopotentiometry has real advantages over other techniques for the 

study of a CE mechanism. 

 

Theory 

The reaction scheme for the CE mechanism can be written as (see notation) 

 
1

2

-e f

b

kk

k k
A O n R→ →+← ←  

(I) 

 
We will consider a spherical static electrode of any size, and we will analyse the 

response of CE processes in cyclic chronopotentiometry. This technique consists 

of applying successive and alternating sign current steps in the following way 
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(II) 

 
where, for the sake of simplicity, it has been supposed that all the current steps 

have the same absolute value, 0I . In this scheme, jt  is the time during which a 

current step j ( 1j =  to k) is applied, and jτ  is the time for which the change in 

sign is produced, being the transition time corresponding to any reduction of 

species O (forward transition times, 1τ , 3τ , 5τ , …) or to any oxidation of species 

R (reverse transition times, 2τ , 4τ , 6τ , …). Thus, during the application of the jth 

current step, the total time elapsed from the beginning of the experiment is given 

by 

 
1 2 1... j jt tτ τ τ −= + + + +  (1) 

 
Under these conditions, when the jth current step is applied, the following 

equation system must be solved in order to obtain the expressions for the 

concentration profiles ( ( , )j
i jc r t , i= A, O, R) of species involved in a CE process 

 
1 2

1 2

ˆ

ˆ

ˆ 0

j j j
A A A O

j j j
O O A O

j
R R

c k c k c

c k c k c

c

δ

δ

δ

 = − +
 = −
 =

 

(2) 

 
with îδ  being the operator for the second Fick’s law in spherical diffusion 

 
2

2

2
î iD

t r r r
δ

 ∂ ∂ ∂
= − + ∂ ∂ ∂ 

 
(3) 

 
where iD  is the diffusion coefficient of species i, and r is the distance from the 

centre of the electrode to any point in the solution. 
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The boundary value problem is given by 
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(6) 

 
where 1( , )j

ic r t−  (i= A, O or R) are the solutions for the ( 1j − )th current step 

applied and 0r  is the electrode radius. 

The solution of equation system (2) with the boundary value problem given by 

eqs. (4)-(6) has been carried out in the Appendix of this paper and the 

expressions for ( , )j
i jc r t  have been obtained. From these, the equations for the 

special case 0r r=  (electrode surface) can be deduced. Thus, we find that the 

equations for the surface concentrations of species participating in the CE 

mechanism corresponding to the jth ( 1j =  to k) current step are 
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where *
ic  (i= A, O or R) are the initial concentrations of species i, AOK  is the 

equilibrium constant of the chemical reaction for the CE mechanism, which is 

given by 

 
*

2
*

1

A
AO

O

k cK
k c

= =  
(10) 

 
and 

 
0

1 2 * *

2
( )CE

O A O

IN
nFAD c c

=
+

 
(11) 

 
1 2

O

R

D
D

γ
 

=  
 

 
(12) 

 
, 1 ...n j n n jt tτ τ += + + +  (13) 

 
,j j jt t=  (14) 

 
The functions ,( )n j

i iS ξ  and , ,( , )n j n j
O OT ξ χ  (i= O or R) are given by the following 

expressions 

 

( ) ( )( )2, , ,
,

1( ) 1 exp 2 2n j n j n j
i i i in j

i
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(15) 
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(16) 

 
with variables ,n j

iξ  and ,n jχ  given by equations (A69) and (A70) in the Appendix 

by changing jt  in these equations by ,n jt  (eq. (13)). 

 

It is worthwhile highlighting that, due to the compact form of eqs. (15) and (16), 

the solutions presented in this paper are valid for spherical electrodes of any size, 

from spherical ultramicroelectrodes to planar electrodes. 
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For planar electrodes ( 0r →∞ , i.e. , 0n j
iξ → ), eqs. (15) and (16) become 

 

( )
1 2

,1 2 ,
, 1 20 n jn j

n j i i

t
t S ξ

π
→ =  

(17) 
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ξ χ

χ
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(18) 

 
and if , 1n jχ >> , then eq. (18) can be written as 

 

( )1 2 , ,
, 1 2

1 2

10, 1
2( )

n j n j
n j O Ot T

k k
ξ χ→ >> =

+
 (19) 

 
For conventional sized spherical electrodes, when , 1n jχ >> , from eq. (16) we 

obtain 

 

( )
2 1 2 1 2
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( ), 1
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O
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r k k D
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(20) 

 
For ultramicroelectrodes ( 0 0r →  and , 1n j

iξ >> ), eqs. (15) and (16) are simplified 

to 

 

( ) ( )1 2 , 1 2 , , 0
, , 1 21 1,

2
n j n j n j

n j i i n j O O
i

rt S t T
D

ξ ξ χ>> = >> =  
(21) 

 
The potential-time response for the jth ( 1j =  to k) current step can be deduced 

by substituting the expressions obtained for the surface concentrations of the 

oxidized and the reduced species, 0( , )j
O jc r t  and 0( , )j

R jc r t  (eqs. (8) and (9)), in the 

Butler-Volmer equation 

 
1

0
0 0

( 1) ( , ) ( , )
j

j j
f O j b R j

I k c r t k c r t
nFA

+−
= −  

(22) 

 
Thus, we obtain the following expression 
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with 

 

( ) ( )'0( )j j
nFt E t E
RT
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(24) 

 
Eq. (23) can be simplified in two limit cases: 

− When '0k →∞  (reversible charge transfer reaction) we obtain, for any 

current step applied, the following expression 
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(25) 

− When '0 1k <<  (totally irreversible charge transfer reaction), the response 

obtained depends on the sign of the current step applied: 

a) If j is odd (the sign of the current is positive and a reduction 

process takes place) 
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b) If j is even (the sign of the current is negative and an oxidation process 

takes place) 

 

( )
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The expressions corresponding to the transition time of the jth current step 

( 1j > ) can be obtained by making 0( , ) 0j
O jc r t =  in eq. (8) if j is odd and 

0( , ) 0j
R jc r t =  in eq. (9) if j is even. Thus, we find 
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In the particular case 1j = , from eq. (8) we obtain 

 

( )
1 2
1 1 1 1

1
( ) ,CE O O AO O ON S K T

τ
ξ ξ χ

=
 + 

 
(30) 

 
The equations deduced for the surface concentrations, potential-time response 

and transition time of a CE mechanism become those corresponding to a simple 

charge transfer reaction (E mechanism) when 0AOK = . This behaviour also 

occurs, for 0AOK ≠ , when , 0n jχ =  or ,n jχ →∞  (see Results and discussion). In 

these cases, our equations coincide with those obtained in reference [14]. 
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Experimental 

In cyclic chronopotentiometry, successive current steps are applied according to 

scheme (II). Their sign is alternately changed at a time which may be less than 

the transition time corresponding to the jth current step, jτ , or equal to it. We 

will consider that the current is reversed when the transition time jτ  is reached, 

which is actually the most common case in practice. 

Fig. 1.a shows the variation of the surface concentration of species O and R, 

participating in the electrochemical reaction. In a CE mechanism, O is the 

oxidized species and its concentration becomes zero at the surface of the 

electrode at odd transition times ( 1τ , 3τ , 5τ , …), while R is the reduced species 

and its concentration becomes zero at the surface of the electrode at even 

transition times ( 2τ , 4τ , 6τ , …). 

Figs. 1.b and 1.c show the typical potential-time response for a CE mechanism in 

a cyclic chronopotentiometric experiment in the case of a reversible charge 

transfer reaction (Fig. 1.b) and in the contrary case of an irreversible 

electrochemical reaction (Fig. 1.c). In these figures, the values of the transition 

times can be also observed. 

In cyclic chronopotentiometry, it is of great interest to study the variation of the 

transition time ratios, defined with respect to the transition time of the first 

electrochemical reaction, 1τ , as 

 

1

j
ja

τ
τ

=  
(31) 

 
with the number of alternating current steps applied, j, since it allows us to 

characterize the electrode process. It is useful to plot the transition time ratios vs. 

j for the CE mechanism, as well as those obtained for an E mechanism, which is 

taken as a reference. 

 



M. López-Tenés et al. / Portugaliae Electrochimica Acta 21 (2003) 255-279 

 264

c ij (r
0,t

)/(
c A

* +c
O

* )  
(i=

 O
, R

) (
j=

 1
, 2

, 3
, 4

, 5
)

0,0

0,2

0,4

0,6

0,8

1,0

∆ E
/m

V

-250

-150

-50

50

150

250

t/s

0 1 2 3 4 5

∆
E/

m
V

-750

-450

-150

150

450

750

a

b

c

O

R

 
Figure 1.a. Variation of the surface concentration of species O (solid line) and R 
(dashed line) with time in cyclic chronopotentiometry ( j =1, 2, 3, 4, 5) for a CE 
mechanism  (eqs. (8) and (9)). 1AOK = , 1 2 15k k+ =  s-1, 1.5CEN =  s-1/2, 510OD −=  cm2 
s-1, 1γ = , * 0Rc = , 2

0 10r −=  cm. 
Figure 1.b. Potential-time curves corresponding to the application of five current steps 
for a CE mechanism with reversible charge transfer reaction (Eq. (25)). 298T K= , 

1n = . Other conditions as in Fig. 1.a. 
Figure 1.c. Potential-time curves corresponding to the application of five current steps 
for a CE mechanism with irreversible charge transfer reaction (Eq. (26)). 0' 510k −=  cm 
s-1, 0.5α = . Other conditions as in Fig. 1.b. 
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As can be deduced from eq. (28), the transition time obtained for a CE 

mechanism when a reduction process takes place (j odd) is given as a function of 

the equilibrium and rate constants of the chemical reaction. However, when an 

even current step is applied (eq. (29)), the transition time does not depend 

explicitly on these parameters. Thus, odd transition time ratios show a behaviour 

quite different to that observed for even ones, and that is why they need to be 

studied separately. 

Fig. 2 shows the influence of 1 2k k+  on the variation of the transition time ratios 

with the number of current steps applied, considering a planar electrode and 

2AOK = . 
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Figure 2. Influence of the rate constants on the variation of 1jτ τ  with j for a CE 
mechanism in a planar electrode (Eqs. (28)-(30) and (17), (18)). 2AOK = . The values of 

1 2k k+  (in s-1) are shown on the curves. The curve with label “E” corresponds to the 
behaviour of a simple E mechanism. a) j odd; b) j even. Other conditions as in Fig. 1.a. 
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Fig. 2.a corresponds to odd values of j and figure 2.b to j even. Both figures show 

that relations ja  are coincident with those obtained for an E mechanism (curves 

labelled with “E” in figure) in two cases: 

1. For 2
1 2 10k k −+ ≤  s-1 (immobile chemical equilibrium), species A and O do not 

interconvert chemically. Consequently, A merely acts as a chemically inert 

component of the system, and hence we observe a response which 

corresponds to an E mechanism with an initial concentration of species O 

equal to *
Oc  (bulk concentration of species O before the first current step is 

applied). 

2. For 1 2 50k k+ ≥  s-1, the chemical equilibrium is totally mobile, and the system 

behaves as an E mechanism with an initial concentration of electroactive 

species O equal to * *
A Oc c+ . Thus, even though absolute transition times are 

greater than those in the situation above, the transition time ratios are 

identical in both cases. 

 

For intermediate values of 1 2k k+ , it can be observed in figures 2.a and 2.b that 

ja  are greater than those corresponding to an E mechanism for any value of j. 

However, both figures show a different behaviour. Thus, for even values of j, the 

transition time ratios always increase with the number of current steps applied 

(Fig 2.b), while, if j is odd (Fig. 2.a), the ratios ja  exhibit the most characteristic 

behaviour of the CE mechanism: there is a range of values of 1 2k k+  (0 ≤ 1 2k k+ ≤ 

5 in Fig. 2.a) for which the transition time ratios first decrease but then increase 

with the growing number of current steps applied. As can be observed, this does 

not occur with an E mechanism ( ja  always decrease with j). Therefore, it is 

possible to characterize a CE mechanism by changing the rate constants, which 

can be done by modifying the experimental conditions (such as pH in the case of 

the reduction of an acid in a buffered solution or the concentration of ligand in 

the case of the reduction of a metal complex) if the chemical reaction is of 

pseudo-first order. 
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The existence of a CE mechanism can be shown as well if we change the current 

density applied to the electrode, that is, if we change the variable CEN  (eq. (11)). 

In Fig. 3 we have plotted the transition time ratios corresponding to a CE 

mechanism (planar electrode) vs. j (j odd in Fig. 3.a and j even in Fig. 3.b) for 

several values of CEN . As in Fig. 2, the curve labelled with “E” corresponds to an 

E mechanism. 
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Figure 3. Influence of the current density on the variation of 1jτ τ  with j for a CE 
mechanism in a planar electrode (eqs. (28)-(30) and (17), (18)). 1 2 10k k+ =  s-1. The 
values of CEN  (in s-1/2) are shown on the curves. a) j odd; b) j even. The curve with 
label “E” corresponds to the behaviour of a simple E mechanism. Other conditions as in 
Fig. 2. 
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This figure has been prepared with a value of the rate constants ( 1 2 10k k+ =  s-1) 

for which the odd transition time ratios do not show the typical behaviour of a 

CE mechanism in the conditions of Fig. 2.a. From the analysis of Fig. 3.a we can 

conclude that: 

a) The variation of CEN  has an influence on the ratios ja . This does not 

occur in an E mechanism, where the transition time ratios are independent 

on the current density applied for planar electrodes (and a similar 

behaviour is observed for spherical electrodes). 

b) The transition time ratios show the peculiar behaviour described above for 

high values of CEN , and so we can characterize a CE mechanism by 

changing the current density applied, what is very easy to do 

experimentally. 

 

Thus, an increase of CEN  achieves the same effect as a possible or hypothetic 

diminution of 1 2k k+ , and therefore, it is a way of externally modifying, through 

an experimental variable, the mobility of the chemical equilibrium coupled to the 

charge transfer reaction. 

In order to analyse the influence of the sphericity, in Fig. 4 we have plotted the 

variation of the transition time ratios corresponding to a CE mechanism with j, 

for several values of 0r . 

As can be observed, the ratios ja  decrease always when 0r  diminishes. The 

behaviour is qualitatively the same as that shown for a planar electrode, but, from 

a quantitative point of view, the effect exerted by the electrode radius on the 

transition time ratios is very important, and becomes greater with the growing 

number of current steps applied. Therefore, it is specially important in cyclic 

chronopotentiometry, and it is consequently of great interest to have deduced 

equations available that take into account the sphericity of the electrode. 
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Figure 4. Influence of the sphericity on the variation of 1jτ τ  with j for a CE 
mechanism (Eqs. (28)-(30)). 1 2 10k k+ =  s-1. The values of 0r  (in cm) are shown on the 
curves. The curve with 0r →∞ corresponds to a planar electrode. a) j odd; b) j even. 
Other conditions as in Fig. 2. 
 

The study of the transition time ratios can also be used to calculate the rate 

constants of the chemical reaction coupled to the charge transfer reaction, as has 

been pointed out in reference [9]. The rate constants can be determined by 

comparing theoretical and experimental 1jτ τ  vs. j curves. This method is more 

advantageous than that described in references [3, 4, 16], where constant current 

and current reversal chronopotentiometry are used, because in the first case we 

obtain all the kinetic information from only one transition time measurement 

( 1τ ), and in the case of current reversal, the ratio 2 1τ τ  is independent on kinetic 
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parameters. However, in cyclic chronopotentiometry we can apply as many 

current steps as we want to. 
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Notation and definitions 
fk , bk  heterogeneous rate constants of forward (reduction) and backward 

(oxidation) charge transfer processes 
0'k  apparent heterogeneous rate constant of charge transfer at 0'E  

α  charge transfer coefficient 
1k , 2k  rate constants of the homogeneous chemical reaction 

AOK  equilibrium constant of the chemical reaction ( 2 1k k= ) 
r  distance from the centre of the spherical electrode to any point in the 

solution 
0r  electrode radius of the spherical electrode 

( , )j
ic r t  concentration profile of species i (i= A, O or R) when a j current step is 

applied 
0( , )j

ic r t  surface concentration of species i (i= A, O or R) when a j current step is 
applied 

*
ic  bulk concentration of species i (i= A, O, or R) 

t  time elapsed between application of the first and the jth current step 
( 1 2 ... jtτ τ= + + + ) 

,n jt  time elapsed between application of the nth and the jth current step 
( 1 ...n n jtτ τ += + + + ) 

jt  time during which a j current step is applied (0 j jt τ≤ ≤ ) 

ja  transition time ratios 

jτ  transition time of the jth current step 
n  number of the electrons transferred in the electrochemical reaction 
F  Faraday constant 
A  area of the electrode 

0I  absolute value of the current step applied 
iD  diffusion coefficient of species i (i = A, O or R and A OD D= ) 

CEN  1 2 * *
02 ( )O A OI nFAD c c= +  



M. López-Tenés et al. / Portugaliae Electrochimica Acta 21 (2003) 255-279 

 271

γ  1 2( )O RD D=  
,n j

iξ  dimensionless parameter of spherical diffusion ( , 02 i n jD t r= ) 
,n jχ  dimensionless parameter referring to the chemical reaction 

( 1 2 ,( ) n jk k t= + ) 
( )jE t  time-dependent potential 
0'E  formal potential of the electrode reaction 
E∆  0'( )jE t E= −  
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Appendix 
1. Application of the first current step 
When a spherical electrode of any size is considered, the mass transport to the 
electrode surface when the first current step is applied is described by the 
differential equation system (eq. (2) with 1j = ) 
 

1 1 1
1 2

1 1 1
1 2

1

ˆ

ˆ

ˆ 0

A A A O

O O A O

R R

c k c k c

c k c k c

c

δ

δ

δ

 = − +
 = −
 =

 

(A1) 

 
where îδ  (i= A, O or R) is the operator for the second Fick’s law given by eq. (3). 
 
The boundary value problem (Eqs. (4)-(6)) is given by: 
 

1 0 1 * 1 * 1 *

1

0,
, ,

0, A A O O R R

t r r
c c c c c c

t r
= ≥ 

= = => →∞
 

(A2) 

 

00

1 1
0

1 00, : O R
O R

r rr r

c Ict r r D D
r r nFA

==

   ∂ ∂
> = = − =   ∂ ∂  

 
(A3) 

 

0

1

0A
A

r r

cD
r

=

 ∂
= ∂ 

 
(A4) 

 
By introducing the variables: 
 

( ) ( ) ( )1 1 1
1 1 1, , ,A Or t c r t c r tζ = +  (A5) 

 
( ) ( ) ( )( ) 1 2 1( )1 1 1

1 1 1, , , k k t
A AO Or t c r t K c r t eφ += −  (A6) 

 
and with the assumption 
 

A O RD D D= ≠  (A7) 
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the differential equation system (A1) and the boundary value problem (eqs. (A2)-
(A4)) are transformed into: 
 

1 1 1ˆ ˆ ˆ 0O O R Rcδ ζ δ φ δ= = =  (A8) 

 
1 0 1 * * 1 1 *

1

0,
, 0,

0, A O R R

t r r
c c c c

t r
ζ φ

= ≥ 
= + = => →∞

 
(A9) 

 

0 0

1 1
0

1 00, : R
O R

r r r r

Ict r r D D
r r nFA
ζ

= =

   ∂ ∂
> = = − =   ∂ ∂   

 
(A10) 

 
1 2 1

0

1
( ) 0k k t

AO
Or r

IK e
r nFAD
φ +

=

 ∂
= − ∂ 

 
(A11) 

 
This problem can also be solved by introducing the variables 
 

1
1

* *
0A O

ru
c c r
ζ

=
+

 
(A12) 

 
1

1
* *

0A O

rv
c c r
φ

=
+

 
(A13) 

 
In such a way, the differential equation system (A8) becomes 
 

1 1 1ˆ ˆ ˆ 0O O R Ru v cδ δ δ= = =  (A14) 

 
where îδ  is now 
 

2

2î iD
t r

δ ∂ ∂
= −
∂ ∂

 
(A15) 

 
By supposing that 1ζ , 1φ , and 1

Rc  have the form: 
 

1 * * 1 1 1 1 2
1 ,

, 0

( , ) ( ) ( )( ) ( )p q
A O p q O O

p q

r t c c sζ ρ ξ χ
=

= + + ∑  (A16) 

 
1 1 1 1 1 1 2

1 ,
, 0

( , ) ( )( ) ( )p q
p q O O

p q
r t sφ δ ξ χ +

=

= ∑  (A17) 

 
1 * 1 1 1 1 2

1 ,
, 0

( , ) ( )( ) ( )p q
R R p q R R

p q
c r t c sσ ξ χ

=

= + ∑  (A18) 
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where 
 

1 0

12i
i

r rs
D t
−

=  (A19) 

 
11

0

2 i
i

D t
r

ξ =  
(A20) 

 
1

1 2 1( )k k tχ = +  (A21) 
 
and using the dimensionless parameters method [17] to solve the differential 
equation system (A8), we obtain the following solutions: 
 

( )1 1
, 0p q Osρ =                unless            1q =  (A22) 

 

( ) ( )1* *
11 1

0,1 1 2
1 2 1

( )
( )

OCE A O
O

sN c cs
k k p

ρ
 Ψ+  = −  +   

 
(A23) 

 

( ) ( ) ( )
1* *

21 1 1
1,1 01 2

1 2

( )
( ) 2

OCE A O
O O

sN c cs s
k k

ρ
 Ψ+  = − −Ψ +   

 
(A24) 

 

( ) ( ) ( ) ( )1 1 1* *
3 0 1 0 11 1

2,1 1 2
1 2 3

( )
( ) 2 4

O O OCE A O
O

s p s p sN c cs
k k p

ρ −
 Ψ Ψ Ψ+  = − − + +   

 
(A25) 

 

( ) ( ) ( ) ( )1* *
01 1 1 1

3,1 4 21 2
1 2

( ) 15
( ) 32 2

OCE A O
O O O

sN c cs s s
k k

ρ
 Ψ+  = − Ψ −Ψ + +   

 
(A26) 

 
 M  

 

( ) ( )1* *
2 11 1

0, 1 2
1 2 2 1

( )
!( )

q OAO CE A O
q O

q

sK N c cs
q k k p

δ +

+

Ψ+
=

+
 

(A27) 

 

( ) ( ) ( )
* *

1 1 1 1
1, 2 2 21 2

1 2

( ) 2 1
2 !( ) 2 2
AO CE A O

q O q O q O
K N c c qs s s

q k k q
δ +

 + +
= Ψ −Ψ + + 

 
(A28) 

 

( ) ( ) ( ) ( ) ( )
* *

1 1 1 1 1
2, 2 3 2 2 1 2 2 11 2

1 2 2 3

4 1( ) 2
4 !( )
AO CE A O

q O q O q q O q q O
q

qK N c cs s p s p s
q k k p

δ + + −
+

 ++  = Ψ − Ψ + Ψ +   
 

(A29) 
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( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

* *
1 1
3, 1 2

1 2

3 2
1 1 1 1

2 4 2 2 2 2 2

( )
4 !( )

8 32 40 15 6 4 6 2 2
2 4 2 2

AO CE A O
q O

q O q O q O q O

K N c cs
q k k

q q q s q s q s q s
q q

δ

+ + −

+
= ×

+

 − + + Ψ − + Ψ + + Ψ − Ψ + +  
(A30) 

 
 M  
 

( ) ( )1 1 1 1
,1 ,1p R p Rs sσ γ ρ= −  (A31) 

 
where γ  is given by eq. (12) and functions 1 1

,1( )p Rsρ  are given by eqs. (A22)-
(A26) by changing 1

Os  by 1
Rs  (eq. (A19)). 1( )isΨ  (i= O, R) are the Koutecký 

functions and (1 2) ((1 ) 2)mp m m= Γ + Γ + . 
 
 
2. Application of the second current step 
When the second current step 0I−  is applied (eqs. (2)-(6) with 2j = ), as this 
problem is linear, we assume that the expressions of the concentration profiles 
can be written: 
 

( ) ( ) ( )2 1 2
2 2, , ,A A Ac r t c r t c r t= + %  (A32) 

 
( ) ( ) ( )2 1 2

2 2, , ,O O Oc r t c r t c r t= + %  (A33) 

 
( ) ( ) ( )2 1 2

2 2, , ,R R Rc r t c r t c r t= + %  (A34) 

 
where (see eq. (1)) 
 

1 2t tτ= +  (A35) 
 
( )1 ,ic r t  (i= A, O or R) are the solutions obtained for the application of the first 

current step, and ( )2
2,ic r t%  are the new unknown functions. 

 
Therefore, if we define the new variables 
 

2 2 2 1 2
A Oc cζ ζ ζ= + = + %  (A36) 

 
( ) 1 2 1 2( ) ( )2 2 2 1 2k k t

A AO Oc K c e τφ φ φ+ += − = + %  (A37) 
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where 1ζ  and 1φ  have already been obtained for the previous step, the boundary 
value problem has now the following, simplified form in terms only of the new 
unknown functions 2ζ%  and 2φ% : 
 

2 0 2 2 2

2 0

0,
0

0, R

t r r
c

t r r
ζ φ

= ≥ 
= = => = 

% % %  
(A38) 

 

00

2 2
0

2 0
20, : R

O R
r rr r

Ict r r D D
r r nFA
ζ

==

   ∂ ∂
> = = − = −   ∂ ∂  

% %
 

(A39) 

 
1 2 1 2

0

2
( )( ) 02k k t

AO
Or r

IK e
r nFAD

τφ + +

=

 ∂
= ∂ 

%
 

(A40) 

 
As can be observed, the boundary value problem which 1ζ  must fulfil in the first 
current step (eq. (A10)) is similar to that corresponding to 2ζ%  in this second 
current step (eq. (A39)), changing 0I  by 02I− , while the boundary value problem 
that 1φ  must fulfil in the first current step (eq. (A11)) is analogous to that fulfilled 
by 2φ%  in the second current step (eq. (A40)), except for the value of the constant 

1 2 1( )2 k ke τ+− . 
 
By supposing that 
 

2 2 2 2 2 2
2 ,

, 0

( , ) ( )( ) ( )p q
p q O O

p q

r t sζ ρ ξ χ
=

= ∑%  (A41) 

 
2 2 2 2 2 1 2

2 ,
, 0

( , ) ( )( ) ( )p q
p q O O

p q

r t sφ δ ξ χ +

=

= ∑%  (A42) 

 
2 2 2 2 2 2

2 ,
, 0

( , ) ( )( ) ( )p q
R p q R R

p q

c r t sσ ξ χ
=

= ∑%  (A43) 

 
and proceeding as in the previous current step, we find that 
 

2 2 1 2
, ,( ) 2 ( )p q O p q Os sρ ρ= −  (A44) 

 
1 2 1( )2 2 1 2

, ,( ) 2 ( )k k
p q O p q Os e sτδ δ+= −  (A45) 

 
2 2 2 2

, ,( ) ( )p q R p q Rs sσ γ ρ= −  (A46) 

 
where 
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2 0

22i
i

r rs
D t
−

=            (i= O, R) (A47) 

 
22

0

2 i
i

D t
r

ξ =            (i= O, R) 
(A48) 

 
2

1 2 2( )k k tχ = +  (A49) 
 
and functions 1 2

, ( )p q Osρ  and 1 2
, ( )p q Osδ  have the form given by equations (A22)-

(A30), by substituting 1
Os  by 2

Os . 
The mathematical treatment used for the first and the second current steps can be 
easily generalised by induction for any number of current steps. Thus, for the jth 
current step ( 1j > ), by applying the superposition principle [14, 16, 18] we can 
express the solution for the differential equation system (2) in the form 
 

( ) ( ) ( )1, , ,j j j
A j A A jc r t c r t c r t−= + %  (A50) 

 
( ) ( ) ( )1, , ,j j j

O j O O jc r t c r t c r t−= + %  (A51) 

 
( ) ( ) ( )1, , ,j j j

R j R R jc r t c r t c r t−= + %  (A52) 

 
where 
 

( ) ( ) ( )
1

1 1

2
, , ,

j
j m

i i i m
m

c r t c r t c r t
−

−

=

= +∑ %  (i= A, O, R) 
(A53) 

 
Thus, if we define the functions 
 

1j j j j j
A Oc cζ ζ ζ−= + = + %  (A54) 

 
( ) 1 2( ) 1k k tj j j j j

A AO Oc K c eφ φ φ+ −= − = + %  (A55) 

 
with 
 

( ) ( ) ( )
1

1 1

2
, , ,

j
j m

m
m

r t r t r tζ ζ ζ
−

−

=

= +∑ %  
(A56) 

 

( ) ( ) ( )
1

1 1

2
, , ,

j
j m

m
m

r t r t r tφ φ φ
−

−

=

= +∑ %  
(A57) 

 
where t is given by (eq (1)) 
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1 2 ... jt tτ τ= + + +  (A58) 

 
from eqs. (A36)-(A40) it can be demonstrated that the boundary value problem 
has the generalised form: 
 

0

0

0,
0

0,
j j j j

R
j

t r r
c

t r r
ζ φ

= ≥  = = => = 
% % %  

(A59) 

 

( )
00

1 0
0

20, : 1
j j

jR
j O R

r rr r

Ict r r D D
r r nFA
ζ +

==

   ∂ ∂
> = = − = −   ∂ ∂  

% %
 

(A60) 

 
1 2

0

( ) 02( 1)
j

k k tj
AO

Or r

IK e
r nFAD
φ +

=

 ∂
= − ∂ 

%
 

(A61) 

 
As can be deduced from eqs. (A38)-(A40) and (A59)-(A61), the partial solutions 

( )j
j tr,~ζ , ( )j

j tr,~φ  and ( ),j
R jc r t%  are formally identical to ( )2

2 ,~ trζ , ( )2
2 ,~ trφ  and 

( )2,j
Rc r t% , i.e. the superposition principle is fulfilled. Therefore, if we suppose that 

 
2

,
, 0

( , ) ( )( ) ( )j j j j p j q
j p q O O

p q

r t sζ ρ ξ χ
=

= ∑%  (A62) 

 
1 2

,
, 0

( , ) ( )( ) ( )j j j j p j q
j p q O O

p q

r t sφ δ ξ χ +

=

= ∑%  (A63) 

 
2

,
, 0

( , ) ( )( ) ( )j j j j p j q
R j p q R R

p q
c r t sσ ξ χ

=

= ∑%  (A64) 

 
it is clear that we can express the solutions in the general form 
 

1 1
, ,( ) 2( 1) ( )j j j j

p q O p q Os sρ ρ+= −  (A65) 

 
1

1 2 1
1

( )
1 1

, ,( ) 2( 1) ( )

j

l
k k

j j j j
p q O p q Os e s

τ

δ δ

−

=

+
+

∑
= −  

(A66) 

 
, ,( ) ( )j j j j

p q R p q Rs sσ γ ρ= −  (A67) 

 
where 
 

0

2
j

i
i j

r rs
D t
−

=   (i= O, R) (A68) 
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0

2 i jj
i

D t
r

ξ =   (i= O, R) 
(A69) 

 
1 2( )j

jk k tχ = +  (A70) 

 
Thus, the concentration profiles (eqs. (A50)-(A52)) are totally determined. From 
the expressions for the concentration profiles, we can deduce those 
corresponding to the surface concentrations of species involved in a CE 
mechanism, which are given by eqs. (7)-(9) in theory. 
 


