Optimal Pricing and Ordering Policies For deteriorating items under progressive trade credit scheme

Nita H. Shah 1
Hardik Soni 2

1 Department of Mathematics,
Gujarat University, Ahmedabad – 380009, Gujarat.
India.
nita_sha_h@rediffmail.com

2 Chimanbhai Patel Post Graduate Institute of Computer Applications,
Ahmedabad – 380051, Gujarat.
India.
Hardik_soni30@yahoo.com

Abstract

In this paper, a mathematical model is developed to formulate optimal pricing and ordering policies when the units in inventory are subject to constant rate of deteriorating and the supplier offers progressive credit periods to settle the account. The concept of progressive credit periods is as follows:

If the retailer settles the outstanding amount by M, the supplier does not charge any interest. If the retailer pays after M but before N (M < N), then the supplier charges the retailer on the un-paid balance at the rate IC1. If the retailer settles the account after N, then he will have to pay an interest rate of IC2 (IC2 > IC1) on the un-paid balance.

The objective is to maximize the net profit. The decision variables are selling price and ordering quantity. An algorithm is given to find the flow of optimal selling price and ordering policy. A numerical illustration is given to study the effect of offered two credit periods and deterioration on decision variables and the net profit of the retailer.

Resumo

Neste trabalho, um modelo matemático desenvolvido está optimizado para formular políticas de preços e encomendas, quando as unidades do inventário estão sujeitos à taxa constante de deterioração progressiva eo fornecedor oferece crédito períodos de liquidar a conta. O conceito de progressividade de crédito períodos é o seguinte: Se o varejista apurado o montante pendente por M, o fornecedor não cobra qualquer interesse. Se o revendedor paga após M, mas antes de N (M < N), em seguida, o fornecedor cobre o varejista sobre as uns-pago à taxa equilíbrio IC1. Se o varejista liquidar a conta depois de N, então ele terá que pagar uma taxa de juro de IC2 (IC2 > IC1) sobre o saldo uns-pagos. O objetivo é maximizar o lucro líquido. A decisão são variáveis preço de venda e ordenando quantidade. Um algoritmo é determinado a encontrar o fluxo otimizado de preço de venda e ordenação política. A ilustração é dado numérico para estudar o efeito do crédito oferecido dois períodos ea deterioração variáveis e decisão sobre o lucro líquido da varejista.

Keywords: EOQ, Progressive Credit Periods, deterioration, Selling Price, Ordering Policy.

Title: Optimal Preços e Encomenda Políticas Para deterioração progressiva itens sob regime de comércio de crédito
1 Introduction

The Wilson’s lot-size model is derived with the assumption that the retailer pays for the goods as soon as it is received by the system. However, in practice, the supplier offers credit period to the retailer to settle his account within the fixed allowable credit period; which encourages retailer to buy more and also attracts more customers. Davis and Gaither (1985) derived a lot-size model when the supplier offers one time opportunity to delay the payments of order, in case, orders for additional units are placed. Shah et al (1988) extended Goyal’s (1985) model by allowing shortages. Mandal and Phaujdar (1989) derived a mathematical model by including interest earned from the sales revenue on the stock remaining beyond the settlement period. Shah and Shah (1992) studied inventory model when supplier offers credit period to settle the retailer’s account by considering stochastic demand. Jamal et al. (1997) developed an inventory model to allow for shortages under the permissible delay in payments. Shah (1997) derived a probabilistic order-level system with lead-time when delay in payments is permissible. Jamal et al. (2000) formulated a mathematical model when retailer can settle the payment either at the end of the credit period or later incurring interest charges on the un-paid balance for the over-due period. Hwang and Shinn (1997) developed the model for determining the retailer’s lot-size and optimal selling price when the supplier permits delay in payments for an order of a product whose demand rate is a function of constant price elasticity.

In this article, an attempt is made to develop mathematical model when units in inventory are subject to constant rate of deterioration and supplier offers two progressive credit periods to the retailer to settle the account. The net profit is maximized with respect to optimal selling and ordering quantity. The effect of deterioration rate of units in inventory system and credit periods on objective function and decision variables are studied using hypothetical numerical example. An algorithm is given to explore the computational flow.

The paper is organized as follows: In section 2, assumptions and notations are given. Section 3 deals with development of mathematical model. In section 4, flowchart is given to search for optimal solution. Analytical results are stated in section 5. The numerical example and observations are given in section 6. The paper concludes with conclusion and bibliography at the end.

2 Assumptions and Notations

The following assumptions are used to develop aforesaid model:
1. The inventory system deals with the single item.
2. The demand is \(R(p) = a - bp \), \(a, b > 0 \), \(a >> b \). \(p \) denotes selling price of the item during the cycle time and a decision variable.
3. Shortages are not allowed and lead-time is zero.
4. Replenishment is instantaneous.
5. Replenishment rate is finite.
6. If the retailer pays by M, then supplier does not charge to the retailer. If the retailer pays after M and before N (\(N > M \)), he can keep the difference in the unit sale price and unit cost in an interest bearing account at the rate of
Ie /unit/year. During [M, N], the supplier charges the retailer an interest rate of \(Ic_1 \) /unit/year. If the retailer pays after N, then supplier charges the retailer an interest rate of \(Ic_2 \) /unit/year (\(Ic_2 > Ic_1 \)) on un-paid balance.

7. The units on – hand deteriorate at a constant rate \(\theta \) (\(0 \leq \theta \leq 1 \)). The deteriorated units can neither be repaired nor replaced during the cycle time.

The notations are as follows:
- \(h \) = The inventory holding cost/unit/year excluding interest charges.
- \(p \) = The selling price/unit. (a decision variable).
- \(C \) = The unit purchase cost, with \(C < p \).
- \(A \) = The ordering cost/order.
- \(M \) = The first offered credit period in settling the account without any extra charges.
- \(N \) = The second permissible delay period in settling the account N > M.
- \(Ic_1 \) = The interest charged per $ in stock per year by the supplier when retailer pays during [M, N].
- \(Ic_2 \) = The interest charged per $ in stock per year by the supplier when retailer pays during [N, T]. (\(Ic_2 > Ic_1 \))
- \(Ie \) = The interest earned/$/year. (\(Ic_1 > Ie \))
- \(T \) = The replenishment cycle time (a decision variable).
- \(IHC \) = Inventory holding cost/cycle.
- \(PC \) = Purchase cost / cycle.
- \(OC \) = Ordering cost / cycle.
- \(IE \) = Interest earned / cycle.
- \(IC \) = Interest charged / cycle.
- \(Q(t) \) = The on-hand inventory level at time \(t \) (\(0 \leq t \leq T \)).
- \(GR \) = Gross revenue.
- \(NP(p, T) \) = Net profit / cycle.
- \(\theta \) = Deterioration rate

3 Mathematical Formulation

The on-hand inventory depletes due to constant demand \(R(p) \) and deterioration of units. The instantaneous state of inventory at any instant of time \(t \) is governed by the differential equation

\[
\frac{dQ(t)}{dt} + \theta Q(t) = -R(p), \quad 0 \leq t \leq T \tag{3.1}
\]

with initial condition \(Q(0) = Q \) and boundary condition \(Q(T) = 0 \). Consequently, the solution of (3.1) is given by

\[
Q(t) = \frac{R(p)e^{\theta(T-t)}-1}{\theta}; \quad 0 \leq t \leq T \tag{3.2}
\]

and the order quantity is

\[
Q = \frac{R(p)e^{\theta T}-1}{\theta} \tag{3.3}
\]

The cost components per unit time are as follows:
- Ordering cost;

\[
OC = \frac{A}{T} \tag{3.4}
\]
Inventory holding cost;
\[IHC = \frac{h}{T} \int_0^T Q(t) \, dt = \frac{h(a-b)p\theta^T}{\theta^2 T} (e^{\theta T} - 1 - \theta T) \] (3.5)

Cost due to deterioration;
\[DC = \frac{C(a-b)p\theta^T}{\theta T} (e^{\theta T} - 1 - \theta T) \] (3.6)

Gross revenue;
\[GR = (p - C)R(p) \] (3.7)

Regarding interest charged and earned, based on the length of the cycle time \(T \), three cases arise:
Case 1: \(T \leq M \)
Case 2: \(M < T < N \)
Case 3: \(T \geq N \)
We discuss each case in detail.

Case 1: \(T \leq M \)

Here, the retailer sells \(Q \)-units during \([0, T]\) and is paying for \(CQ \)-units during \([0, T]\) and is paying for \(CQ \) in full to the supplier at time \(M \geq T \). So interest charges are zero. i.e.
\[IC_1 = 0 \] (3.8)

The retailer sells products during \([0, T]\) and deposits the revenue in an interest bearing account at the rate of \(Ie/\$/year \). In the period, \([T, M]\) the retailer deposits revenue into the account that earns \(Ie/\$/year \). Therefore interest earned per year is
\[IE_1 = \frac{ple}{T} \left[R(p)T \right] \int_0^T R(p)T(M-T) \, dt = \frac{ple(a-bp)(2M-T)}{2} \] (3.9)

the net profit; \(NP_1 \) is given by
\[NP_1(p, T) = GR - OC - IHC - DC - IC_1 + IE_1 \] (3.10)
p and \(T \) are continuous variables. Hence, the optimal values of \(p \) and \(T \) can be obtained by setting
\[\frac{\partial NP_1(p, T)}{\partial p} = 0 \] (3.11)
The obtained $T = T_1$ and $p = p_1$, maximizes the net profit; provided
\[X Y - Z^2 < 0 \] (3.13)

where
\[X = \frac{\partial^2 N P_1 (p, T)}{\partial p^2} = -2b - le b(2M - T); \]
\[Y = \frac{\partial^2 N P_1 (p, T)}{\partial T^2} = \frac{-2A}{T^3} \left(\frac{h}{\theta} + C \right)(a - b)p \left(\frac{h}{\theta} + C \right) - 2 \left(e^{\theta T} - 1 \right) \left(e^{\theta T} - \theta T \right) \]
\[Z = \frac{\partial^2 N P_1 (p, T)}{\partial T \partial p} = \frac{(e^{\theta T} - 1)b(h + C)}{T} - \frac{b(e^{\theta T} - 1 - \theta T)}{\theta T^2} \left(\frac{h}{\theta} + C \right) - \frac{le(a - 2bp)}{2}. \]

Case 2: M < T < N

Inventory level

![Figure 2: M < T < N](image)

The retailer’s sells units and deposits the revenue into an interest bearing account at an interest rate le/unit/year during $[0, M]$. Therefore, interest earned during $[0, M]$ is given by
\[IE_2 = \frac{p}{M} \int_0^M R(p) dt = \frac{1}{2} le(a - bp)M^2 \] (3.14)

Buyer has to pay for $Q = R(p) T$ units purchased in the beginning of the cycle at the rate of C $\$/unit to the supplier during $[0, M]$. The retailer sells $R(p) M$–units at sale price $\$ p/unit. So he has generated revenue of $p M R(p)$ plus the interest earned, $IE_{2.1}$, during $[0, M]$. Two sub-cases may arise:

Sub-case 2.1: Let $p R(p) M + IE_{2.1} \geq CQ$, i.e. the retailer has enough money to pay for all Q–units procured. Then, interest charges;
\[IC_{2.1} = 0 \] (3.15)

and interest earned; $IE_{2.1}$ per time unit is
\[IE_{2.1} = \frac{IE_2}{T} \] (3.16)

Using equations (3.4) to (3.7), (3.15) and (3.16), the net profit; $NP_{2.1} (p, T)$ is given by
\[NP_{2.1} (p, T) = GR - OC - IHC - DC - IC_{2.1} + IE_{2.1} \] (3.17)
The optimum values of \(p = p_{2.1} \) and \(T = T_{2.1} \) are solutions of
\[
\frac{\partial NP_{2.1}(p, T)}{\partial p} = a - 2pb + bc + \left(\frac{e^{\theta T} - 1}{\theta T} \right)b \left(\frac{h}{\theta} + C \right) - \frac{le M^2(a - 2pb)}{2T} = 0
\]
and
\[
\frac{\partial NP_{2.1}(p, T)}{\partial T} = A - \left(\frac{h}{\theta} + C \right)(a - bp) + \left(\frac{e^{\theta T} - 1}{\theta T^2} \right) - \frac{ple(a - bp)M^2}{2T^2} = 0
\]
The obtained \(p = p_{2.1} \) and \(T = T_{2.1} \) maximizes the net profit provided \(XY - Z^2 < 0 \)

Where, \(X = \frac{\partial^2 NP_{2.1}(p, T)}{\partial p^2} = -2b - \frac{le b M^2}{T} \)
\[
Y = \frac{\partial^2 NP_{2.1}(p, T)}{\partial T^2} = -2A - \left(\frac{h}{\theta} + C \right)(a - bp) - \frac{2(e^{\theta T} - 1)}{\theta T^2} + \frac{2(e^{\theta T} - 1)}{\theta T^3} + \frac{ple(a - bp)M^2}{2T^2}
\]
\[
Z = \frac{\partial^2 NP_{2.1}(p, T)}{\partial T \partial p} = \left(\frac{e^{\theta T} - 1}{\theta T} \right)b(a + C) - \frac{b(e^{\theta T} - 1)(h)}{\theta T^2} - \frac{let(a - 2bp)M^2}{2T^2}
\]

Sub case 2.2: Let \(p R(p) M + IE_2 < CQ \)
Here, retailer will have to pay interest on un-paid balance \(U_1 = C R(p) - \left[p R(p) M + IE_2 \right] \) at rate of \(Ic_1 \) at time \(M \) to supplier. The interest to be paid; \(IC_{2.2} \) per time unit is:
\[
IC_{2.2} = \frac{U_1^2}{pR(p)T} \int_{t_0}^{t} Ic_1(t) dt = \frac{IC_2^2((e^{\theta(T-M)}) + M(\theta - 1)(-\theta T)^2 - \frac{le M^2(a - 2bp)}{2})}{2\theta^2 p T}
\]
and interest earned;
\[
IE_{2.2} = \frac{IE_2}{T}
\]
Using equations (3.4) to (3.7), (3.21) and (3.22), the net profit; \(NP_{2.2}(p, T) \) is given by
\[
NP_{2.2}(p, T) = GR - OC - IHC - DC - IC_{2.2} + IE_{2.2}
\]
The optimum values of \(p = p_{2.2} \) and \(T = T_{2.2} \) are solutions of
\[
\frac{\partial NP_{2.2}(p, T)}{\partial p} = a - 2pb + bc + \left(\frac{e^{\theta T} - 1}{\theta T} \right)b \left(\frac{h}{\theta} + C \right) - \frac{IC_1 U_1^2((e^{\theta(T-M)}) + M\theta - 1)(-\theta T)^2 - \frac{le M^2(a - 2bp)}{2})}{2\theta^2 p T} + \frac{IC_2 U_1^2((e^{\theta(T-M)}) + M\theta - 1)(-\theta T)^2 - \frac{ple(a - bp)M^2}{2T^2}}{2\theta^2 p T^2} = 0
\]
and
\[
\frac{\partial NP_{2.2}(p, T)}{\partial T} = A - \left(\frac{h}{\theta} + C \right)(a - bp) + \left(\frac{e^{\theta T} - 1}{\theta T^2} \right) - \frac{IC_1 U_1^2((e^{\theta(T-M)}) + M\theta - 1)(-\theta T)^2 - \frac{ple(a - bp)M^2}{2T^2}}{2\theta^2 p T^2} = 0
\]
The obtained \(p = p_{2.2} \) and \(T = T_{2.2} \) maximizes the net profit provided \(EF - G^2 < 0 \)

Where
\[
E = \frac{\partial^2 N_{p_2}}{\partial p^2} = -2b - \frac{\partial}{\partial p} \left(\frac{\partial^2}{\partial p^2} \right) \left[\frac{Ic_1(e^{\theta(T-M)+M\theta-1-\theta T})e^{ChT-(a-2bp)M-M(p^2)M - 2}}{2} \right]
\]
\[
F = \frac{\partial^2 N_{p_2}}{\partial T^2} = -2A \frac{\partial}{\partial T} \left(\frac{\partial^2}{\partial T^2} \right) \left[\frac{2ic_1U_1(e^{\theta(T-M)+M\theta-1-\theta T})(a-h)p}{T^2} - \frac{(e^{\theta T}-1)}{\theta T^5} \right]
\]
\[
G = \frac{\partial^2 N_{p_2}}{\partial T^2} = \frac{\partial}{\partial T} \left(\frac{\partial^2}{\partial T^2} \right) \left[\frac{Ic_1(e^{\theta(T-M)+M\theta-1-\theta T})e^{ChT-(a-2bp)M-M(p^2)M - 2}}{2} \right]
\]
Case 3: $T \geq N$

Based on the total purchase cost, CQ, the total money in account at M is $pR(p)M + IE_2$ and total money in account at N is $pR(p)N + pIeR(p)N^2/2$, three sub-cases may arise:

Sub-case 3.1: Let $pR(p)M + IE_2 \geq CQ$

This sub-case is same as sub-case 2.1. (Note: Decision variables and objective function are designated by 3.1)

Sub-case 3.2: Let $pR(p)M + IE_2 < CQ$ and

$$pR(p)(N-M) + \frac{pIeR(p)(N-M)^2}{2} \geq CQ - (pR(p)M + IE_2)$$

This sub-case coincides with sub-case 2.2. (Note: Decision variables and objective function are designated by 3.2)

Sub-case 3.3: Let $pR(p)N + \frac{pIeR(p)N^2}{2} < CQ$ and

$$pR(p)(N-M) + \frac{pIeR(p)(N-M)^2}{2} < CQ - (pR(p)M + IE_2)$$

Here, retailer does not have money in his account to pay off total purchase cost at time N. He will do payment of $pR(p)M + IE_2$ at M and $pR(p)(N-M) + \frac{pIeR(p)(N-M)^2}{2}$ at N.

So, he has to pay interest charges on the un-paid balance $U_1 = CQ - (pR(p)M + IE_2)$ with interest rate Ic_1 during $[M, N]$ and un-paid balance, $U_2 = U_1 - \left(pR(p)(N-M) + \frac{pIeR(p)(N-M)^2}{2}\right)$ with interest rate Ic_2 during $[N, T]$. Therefore total interest charges; $IC_{3.3}$; per time unit is given by

$$IC_{3.3} = \frac{U_1Ic_1(N-M)}{T} + \frac{U_2^2}{pR(p)T} \int_N^T Q(t)dt$$

$$= \frac{U_1Ic_1(N-M)}{T} + \frac{Ic_2U_2^2(e^{\theta(T-N)}+N\theta-1-\theta T)}{\theta^2 p T}$$

(3.27)

and interest earned;

$$IE_{3.3} = \frac{IE_2}{T}$$

(3.28)

Using equations (3.4) to (3.7), (3.27) and (3.28), the net profit; $NP_{3.3}(p, T)$ is given by
The optimum values of \(p = p_{3.3} \) and \(T = T_{3.3} \) are solutions of

\[
\frac{\partial N_{3.3}}{\partial p} = a - 2b + c + \left(\frac{\partial T - 1 - \theta T}{\theta T} \right) b \left(\frac{h}{\theta + C} \right) - \frac{I_{c_1}(N-M) - CbT - (a-2b)pM - \frac{Ie M^2(a-2b)}{2}}{T}
\]

\[
= \frac{2I_{c_2}U_2(e^{\theta(T-N)} + N\theta - 1 - \theta T)}{\theta^2 \ p \ T} + \frac{l_{c_2}U_2^2(e^{\theta(T-N)} + N\theta - 1 - \theta T)}{\theta^2 \ p^2 \ T} + \frac{l e M^2(a-2b)}{2T} = 0
\]

and

\[
\frac{\partial N_{3.3}}{\partial T} = A \frac{h}{T^2} \left(a - b \right) \left(\frac{\partial T - 1}{\theta T} \right) - \frac{I_{c_1}(a-b)pC(N-M)}{T} + \frac{U_1l_{c_1}(N-M)}{T^2}
\]

\[
- \frac{2I_{c_2}U_2(e^{\theta(T-N)} + N\theta - 1 - \theta T)C(a-b)}{\theta^2 \ p \ T} - \frac{l_{c_2}U_2^2(e^{\theta(T-N)} + N\theta - 1 - \theta T)}{\theta^2 \ p^2 \ T}
\]

\[
= \frac{ple(a-b)pM^2}{2T^2} = 0
\]

The obtained \(p = p_{3.3} \) and \(T = T_{3.3} \) maximizes the net profit provided

\[
Bk - J^2 < 0
\]

where

\[
B = \frac{\partial^2 N_{3.3}}{\partial p^2} = -2b - \left(2bM + ibM^2 \right) l_{c_1}(N-M) - \frac{2I_{c_2}(e^{\theta(T-N)} + N\theta - 1 - \theta T) %}{\theta^2 \ p \ T}
\]

\[
+ \frac{4I_{c_2}U_2(e^{\theta(T-N)} + N\theta - 1 - \theta T)C(a-b)}{\theta^2 \ p \ T}
\]

\[
- \frac{2I_{c_2}U_2^2(e^{\theta(T-N)} + N\theta - 1 - \theta T)}{\theta^2 \ p^2 \ T}
\]

\[
- \frac{le b M^2}{T};
\]

\[
K = \frac{\partial^2 N_{3.3}}{\partial T^2} = \frac{2A}{T^3} \left(\frac{h}{\theta + C} \right) \left(a - b \right) \left(\frac{\partial T - 1}{\theta T} \right) - \frac{2(e^{\theta T} - 1)}{\theta T^3}
\]

\[
= \frac{2C(a-b)pC(N-M)}{T^2} - \frac{2U_1l_{c_1}(N-M)}{T^3}
\]

\[
- \frac{2I_{c_2}C(a-b)p^2(e^{\theta(T-N)} + N\theta - 1 - \theta T)}{\theta^2 \ p \ T}
\]

\[
- \frac{4I_{c_2}U_2^2(e^{\theta(T-N)} + N\theta - 1 - \theta T)C(a-b)}{\theta^2 \ p^2 \ T}
\]

\[
+ \frac{4I_{c_2}U_2(e^{\theta(T-N)} + N\theta - 1 - \theta T)C(a-b)}{\theta p \ T}
\]

\[
- \frac{k_{c_2}U_2^2(e^{\theta(T-N)} + N\theta - 1 - \theta T)}{\theta p \ T^2}
\]

\[
- \frac{ple(a-b)pM^2}{2T^3}.
\]
\[
J = \frac{\partial^2 N_{3,3}(p, T)}{\partial T \partial p} = \left(e^{\beta T} - 1 \right) b (h + C) \left(\frac{h}{\beta T^2} \right) + \frac{Chc_1(N-M)}{T} + \frac{\left(-Ch^2 - (a-2bp)M - \frac{ie M^2 (a-2bp)}{2}\right)lc_1(N-M)}{T^2} - \frac{2lc^2C(a-bp)\%1}{\theta^2 p T} - \frac{2lc_2U_2\%2C(a-bp)}{\theta^2 p^2 T} + \frac{2lc_2U_2\%2Cb}{\theta^2 p T} - \frac{2lc_2U_2(e^{\theta(T-N)-1})\%1}{\theta p T} + \frac{lc_2U_2\%2}{\theta^2 p^2 T^2} - \frac{ie(a-2bp)M^2}{2T^2}
\]

where

\%
\%1 = \left\{ \left(-Ch^2 - (a-2bp)M - \frac{ie M^2 (a-2bp)}{2}\right) - (a-2bp)(N-M) - \frac{ie (N-M)^2 (a-2bp)}{2} \right\}

\%
\%2 = \left(e^{\theta(T-N)} + N\theta - 1 - \theta\right)

In the next section, computational flowchart is given to search for optimal solution.
4 Flowchart

Start

Compute \(T = T_1 \) and \(p = p_1 \) from case \(-1\)

Is \(T_1 < M \)

Yes

Calculate \(NP_1(p, T) \)

No

Is \(M < T < N \)

Yes

Compute \(T = T_{2.1} \) & \(p = p_{2.1} \) from subcase \(-2.1\)

or

\(T = T_{3.1} \) & \(p = p_{3.1} \) from subcase \(-3.1\)

No

Is \(p R(p) M + Ie_2 \geq CQ \)

Yes

End

No

Compute \(NP(p, T) = \max \{ NP_i(p_i, T_i) \} \);
\(i = 1, 2.1, 2.2, 3.1, 3.2, 3.3 \)

5 Theoretical Results

Proposition 5.1: \(NP_i(p_i, T_i) \) is maximum for \(i = 1, 2.1, 2.2, 3.1, 3.2, 3.3 \).
Proof: It follows from equations (3.13), (3.20), (3.26), (3.32).

Proposition 5.2: For \(T > N \), \(NP_{3.3}(p, T) \) is increasing function of \(M \) and \(N \).
Proof:
\[
\frac{\partial NP_3}{\partial M} = \frac{p(a-bp)(1+M)k_1(N-M)}{T} + \frac{U_1 k_1}{T} - \frac{2k_2 U_2}{T} \left[p \left(a-bp \right) (N-2M) \right] + \frac{p \left(a-bp \right) M}{T} > 0
\]

\[
\frac{\partial NP_3}{\partial N} = -\frac{U_1 k_1}{T} + \frac{2k_2 U_2}{T} \left[p \left(a-bp \right) (N-M) \right] + \frac{k_2 U_2}{T} \left(e^{\theta(T-N)} - 1 \right) > 0
\]

\[\%_2 = (e^{\theta(T-N)} + N\theta - 1 - \theta T)\]

Proposition 5.3: \(NP_i(p_i, T_i)\) is a decreasing function of \(\theta\).

Proof:
\[
\frac{\partial NP_1}{\partial \theta} = -\frac{(a-bp)e^{\theta T - 1}}{\theta} \left(\frac{h}{\theta} + C \right) + \frac{(a-bp)e^{\theta T - 1} - \theta T}{\theta^2} \left(\frac{2h}{\theta} + C \right) < 0
\]

\[
\frac{\partial NP_2}{\partial \theta} = -\frac{(a-bp)e^{\theta T - 1}}{\theta} \left(\frac{h}{\theta} + C \right) + \frac{(a-bp)e^{\theta T - 1} - \theta T}{\theta^2} \left(\frac{2h}{\theta} + C \right) < 0
\]

\[
\frac{\partial NP_3}{\partial \theta} = -\frac{(a-bp)e^{\theta T - 1}}{\theta} \left(\frac{h}{\theta} + C \right) + \frac{(a-bp)e^{\theta T - 1} - \theta T}{\theta^2} \left(\frac{2h}{\theta} + C \right) < 0
\]

\[
\frac{\partial NP_4}{\partial \theta} = -\frac{(a-bp)e^{\theta T - 1}}{\theta} \left(\frac{h}{\theta} + C \right) + \frac{(a-bp)e^{\theta T - 1} - \theta T}{\theta^2} \left(\frac{2h}{\theta} + C \right) < 0
\]

\[
\frac{\partial NP_5}{\partial \theta} = -\frac{(a-bp)e^{\theta T - 1}}{\theta} \left(\frac{h}{\theta} + C \right) + \frac{(a-bp)e^{\theta T - 1} - \theta T}{\theta^2} \left(\frac{2h}{\theta} + C \right) < 0
\]

6 Numerical Illustration

Using data \([A, C, h, a, b] = [200, 20, 0.2, 1000, 10]\) in appropriate units, we study effect of progressive trade credits and deterioration in following tables:

<table>
<thead>
<tr>
<th>N (\rightarrow) M (\longrightarrow)</th>
<th>15/365</th>
<th>20/365</th>
<th>25/365</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ic₁ = 15%</td>
<td>Ic₁ = 16%</td>
<td>Ic₁ = 17%</td>
<td></td>
</tr>
<tr>
<td>30/365 Ic₂ = 18%</td>
<td>T = 0.3058</td>
<td>T = 0.3055</td>
<td>T = 0.3054</td>
</tr>
<tr>
<td></td>
<td>P = 60.59</td>
<td>P = 60.57</td>
<td>P = 60.54</td>
</tr>
<tr>
<td></td>
<td>Q = 120.70</td>
<td>Q = 120.65</td>
<td>Q = 120.69</td>
</tr>
<tr>
<td></td>
<td>R = 394.09</td>
<td>R = 394.34</td>
<td>R = 394.56</td>
</tr>
<tr>
<td></td>
<td>NP = 15250.85</td>
<td>NP = 15269.16</td>
<td>NP = 15287.32</td>
</tr>
</tbody>
</table>
It is observed that increase in deterioration of units in inventory decreases the net profit and cycle time and increases selling price. The results exhibited in tables coincide with analytical propositions.

7 Conclusion

In this article, an attempt is made to develop an EOQ model in which demand is assumed to be decreasing function of selling price (a decision variable) and units in inventory deteriorate at a constant rate when supplier offers two progressive credit periods, if retailer could not settle his account. An easy-to use computational algorithm is given to search for optimal policy. The observed managerial issues are as follows:

1. Increase in first allowable credit period decreasing the order quantity and increases net profit whereas selling price is insensitive.
2. Increase in extended permissible credit period lowers cycle time and selling price. Net profit decreases significantly.
3. Increase in deterioration rate reduces cycle time and net profit whereas selling price leisurely goes up.
The proposed model can be extended by taking demand as a function of time, product quality, stock etc. It can also be generalized to allow for shortages, partial lost-sales.

8 References

Shah, Nita H.; (1997): Probabilistic order level system with lead time when delay in payments is permissible, TOP (Spain), Vol 5, No 2, pp. 297 – 305.

