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Abstract

In this paper we consider the single machine scheduling problem with integer release
dates and the objective of minimising the sum of deviations of jobs’ completion times from
a common integer due date. We present an efficient polynomial algorithm for the unit
processing time case. We also show how to calculate in polynomial time the minimum
non-restrictive due date for the general case.
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1 Introduction

The scheduling problem considered in this paper can be stated as follows. A set of n inde-
pendent jobs {J1, J2, · · · , Jn}, each with a possibly different integer release date rj , a common
integer due date d and a processing time pj , has to be scheduled without preemptions on
a single machine that can handle at most one job at a time. The objective is to minimise
the sum of the absolute deviations of the jobs’ completion times from the common due date
∑n

j=1
|Cj − d|, where Cj is the completion time of job Jj . In the classification scheme pro-

posed by Lawler, Lenstra, Rinnooy Kan and Shmoys [6], this problem can be represented as
1 |dj = d, rj |

∑

|Cj − d|. Scheduling models with both earliness and tardiness costs are par-
ticularly appealing, since they are compatible with the philosophy of just-in-time production.
The model is also made more realistic by the existence of different release dates, since in most
real production settings the orders are released to the shop floor over time (and not all simul-
taneously). Therefore, the problem considered has several potential practical applications.

The identical release dates version of this problem with a non-restrictive due date (i.e.,
a due date that does not constrain the optimal schedule cost) - 1 |dj = dnr|

∑

|Cj − d| - can
be solved in O (n log n) time by algorithms presented by Kanet [5] and Bagchi, Sullivan and
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Chang [1]. Hall, Kubiak and Sethi [4] proved that the restrictive version 1 |dj = dr|
∑

|Cj − d|
is NP−hard. Models with different release dates have been addressed by Nandkeolyar, Ahmed
and Sundararaghavan [7], Sridharan and Zhou [8] and Bank and Werner [3]. Nandkeolyar,
Ahmed and Sundararaghavan [7] consider the single machine problem 1 |rj |

∑

cj |dj − Cj |,
where cj and dj are, respectively, the cost per unit time and the due date of Jj . They present
several heuristics, developed in a modular fashion. Sridharan and Zhou [8] present a decision
theory based approach for a more general problem where the cost per unit time is allowed
to be different according to whether the job is early or tardy. Bank and Werner [3] consider
a model with unrelated parallel machines, a common due date and earliness and tardiness
costs that may differ between jobs. They present several constructive and iterative heuristics.
It should be pointed out that there are a large number of papers considering earliness and
tardiness penalties. Only the papers above are reviewed because they consider problems that
are closest to ours. For more information on problems with earliness and tardiness costs, the
interested reader is referred to Baker and Scudder [2], who present a comprehensive survey of
early/tardy scheduling.

In section 2 a O (n log n) algorithm for the problem with unit processing times

1 |pj = 1, dj = d, rj |
∑

|Cj − d|

is presented. A polynomial algorithm for calculating the minimum non-restrictive value of d

in the general case 1 |dj = d, rj |
∑

|Cj − d| is also given in section 3.

2 An algorithm for problem 1 |pj = 1, dj = d, rj|
∑

|Cj − d|

In this section a O (n log n) algorithm for the problem with unit processing times is presented.
Several lemmas and theorems are first developed. These lemmas and theorems characterize
the structure of an optimal solution. The algorithm then simply schedules the jobs in such a
way that the lemmas and theorems are satisfied (hence optimally).

Lemma 1 There exists an optimal sequence where each Cj is integer.

Proof. Any feasible schedule with non integer Cj ’s can be transformed into a feasible sequence,
of lower or equal cost, where all Cj ’s are integer. Starting from d and scanning left, take the
first job, if any, with a non integer Cj < d such that there exists idle time to the right of
that job. Move that job to the right until it is blocked by another job or it completes at an
integer time, whichever occurs first. Any such movement will decrease the cost of the schedule.
Repeat until no such jobs exist. Perform a similar scan to the right of d, this time moving
jobs to the left (such a move is always feasible because each job has an integer rj and we stop
as soon as an integer start time is reached, if the job is not blocked before). Again, any such
movement decreases the schedule cost. At this time, at most one group of jobs performed
consecutively with no idle time in between (or possibly just a single job) starts and completes
at non integer times that encompass d. Let A and B denote the sets of jobs in that group
that complete after and before d, respectively. If |A| > |B|, move the block backwards until
an integer start time is reached. The schedule cost will decrease, since the earliness of each
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job in B increases by the amount of backwards movement but the tardiness of each job in A

decreases by that same amount. If |A| < |B|, move the block forward instead. If |A| = |B|,
move either forward or backward. The new schedule has all integer Cj and its cost is lower or
the same.

This lemma allows us to focus on unit time slots that begin at integer times, since there
exists an optimal sequence where jobs are scheduled in n of those slots. This result also
indicates that the problem could be formulated as a weighted bipartite matching problem,
and therefore solved in O

(

n3
)

time, but a more efficient approach is possible. The next
lemma identifies the best possible schedule.

Lemma 2 Any feasible sequence in which the jobs are scheduled in the n consecutive time
slots in the time range

[

d −
⌈

n
2

⌉

, d +
⌊

n
2

⌋]

is also optimal.

Proof. No slot in this range has a cost higher than
⌊

n
2

⌋

. Since any slot not in this time range
has a cost that is at least as high as this value, the jobs are indeed scheduled in the n least
cost slots and the sequence is therefore optimal.

Assume, for the remainder of this section, that jobs have been renumbered in non decreasing
order of their release dates. Let ECj be the earliest possible completion time of job j when
jobs are considered for processing in increasing index order. Let EC = ECn denote the earliest
possible completion time of the job with the largest index. Also note that, according to their
definition, all ECj ’s must be different.

Lemma 3 It is possible to schedule the jobs in the n consecutive time slots in the time range
[

d −
⌈

n
2

⌉

, d +
⌊

n
2

⌋]

if and only if EC ≤ d +
⌊

n
2

⌋

.

Proof. If EC > d+
⌊

n
2

⌋

then obviously at least one job cannot be completed up to d+
⌊

n
2

⌋

. If
EC ≤ d+

⌊

n
2

⌋

, any job with ECj > d−
⌈

n
2

⌉

can be scheduled to complete at its ECj while the
remaining jobs can be arbitrarily assigned to the still empty time slots in the optimal range.
That assignment is clearly feasible, since the start time of each of those jobs is being delayed.

The next theorem identifies the minimum non-restrictive due date.

Theorem 4 The due date d is non-restrictive when d ≥ EC −
⌊

n
2

⌋

.

Proof. Lemma 2 identifies the best possible schedule. From lemma 3, that schedule is feasible
only if d ≥ EC −

⌊

n
2

⌋

.

The next lemmas provide further characteristics of an optimal solution that will be used
in the algorithm.

Lemma 5 If EC > d +
⌊

n
2

⌋

, all jobs will be scheduled in the time range
[

d −
⌈

n
2

⌉

, EC
]

in an
optimal sequence.
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Proof. It is clear that all slots in the range have a lower cost than any slot that starts at or
later than EC. Also jobs with ECj > d −

⌈

n
2

⌉

can once again be scheduled to complete at
their ECj while the remaining jobs can be arbitrarily assigned to the still empty time slots in
the range

[

d −
⌈

n
2

⌉

, d +
⌊

n
2

⌋]

, thereby decreasing their cost.

Lemma 6 There exists an optimal schedule in which all jobs with ECj ≥ d are scheduled to
complete at their ECj.

Proof. Consider the slots with a completion time equal to ECj , for ECj ≥ d. If a job with
ECj ≥ d is completed later than its ECj , and the slot with a completion time equal to ECj is
free, one can simply move that job into this slot (thereby decreasing its cost, since it will be
completed earlier). Also, any feasible schedule in which any slot with a completion time equal
to ECj , for ECj ≥ d, is occupied by a job with ECj < d (an offending job) can be converted
into an equal cost sequence in which all such slots are filled with jobs with ECj ≥ d. For
each of those slots, any offending job is simply swapped with the job whose ECj is equal to
that slot’s completion time. These swaps do not change the schedule cost and feasibility is
maintained (the release date of the offending job is not larger than that of the job with which
it is swapped, since its ECj is lower, so it can also be feasibly scheduled in its destination
slot). After all such swaps are performed, only jobs with ECj ≥ d use those slots, though they
are not necessarily in ECj order (jobs are considered in increasing order of their indexes when
calculating the ECj ’s, so some jobs can feasibly be scheduled before their ECj). If that is the
case, reordering the jobs according to their ECj will not alter cost nor feasibility. Therefore,
all jobs with ECj ≥ d can be optimally scheduled to complete at their ECj .

Lemma 6 assigns optimal slots for jobs with ECj ≥ d, so all that remains is to optimally
schedule the remaining jobs in the available slots. The next lemma considers those jobs.

Lemma 7 Given that jobs with ECj ≥ d are scheduled according to lemma 6, the remaining
jobs should be scheduled in the available slots that are closest to d (i.e., the lowest cost slots).

Proof. It simply needs to be proved that such a schedule is feasible, since it is clearly optimal.
Let |B| be the number of jobs with ECj < d (and therefore of necessary slots). The earliest
possible completion time of the available slots that are closest to d is d− 1, d− 2, · · · , d− |B|.
The latest possible ECj ’s of the remaining jobs are also d−1, d−2, · · · , d−|B|, so they can be
feasibly assigned to the least cost slots. Since any other case involves later slots and/or earlier
ECj ’s, it is always feasible to schedule the remaining jobs in the least cost available slots. An
easy way for an algorithm to ensure feasibility is to simply consider jobs in decreasing order
of their ECj .

An algorithm that schedules jobs in such a way that the previous lemmas are satisfied is
now presented. The algorithm uses a min heap of free time slot ranges and their associated
minimum cost (the cost of the best slot in that range), which serves as the key for pushing
and popping elements from the heap.



J.M. Valente, R.A. Alves / Investigação Operacional, 24 (2004) 63-71 67

Algorithm 1

Step 1: Sort and renumber jobs in non decreasing order of rj .

Step 2: Calculate ECj for all jobs.

Step 3: If EC < d +
⌊

n
2

⌋

, push range
[

EC, d +
⌊

n
2

⌋]

on heap.

Step 4: For each job, in decreasing order of ECj , do:

If ECj ≥ d

schedule j to complete at its ECj ;

if j > 1, push range [ECj−1, ECj − 1] on heap;

Else

schedule j to complete at its ECj or at the best available free time slot on the
heap (whichever has a lower cost; ties can be broken arbitrarily); in the latter
case update the range that included that slot and re-insert it on heap;

if j > 1, push on heap:

range [ECj−1, ECj − 1] if j completes at its ECj ;

range [ECj−1, ECj ] if j was scheduled at the best available free time slot on
the heap.

In the previous algorithm ranges are obviously only pushed on the heap when the upper
limit is higher than the lower limit. Updating a time range that ends at or before d or begins
at or after d simply involves increasing its minimum cost by one and decreasing its finish time,
or increasing its start time, respectively, by one time unit (thereby eliminating its previously
best slot). Only one range that contains d as an interior point can be generated. When such
a range is updated, it’s divided into the two separate ranges that result from eliminating the
time slot which finishes at d. Step 1 takes O (n log n) time and Step 2 O (n) time. Step 3 can
be done in constant time. In Step 4, the For loop is executed n times. In each iteration pushing
or popping the heap takes O (log n) time and scheduling the job and updating time ranges
(when necessary) takes O (1) time. Therefore, the complexity of the algorithm is O (n log n).

Theorem 8 Algorithm 1 generates an optimal schedule.

Proof. The theorem follows from the previous lemmas. Jobs with ECj ≥ d are scheduled
as in lemma 6. The algorithm pushes all available time slots with completion time not later
than max

(

EC, d +
⌊

n
2

⌋)

on the heap and jobs with ECj < d are scheduled on the best of
those slots, as established in lemma 7. Note that when EC ≤ d +

⌊

n
2

⌋

, jobs with ECj ≥ d are
scheduled to finish inside the optimal range d −

⌈

n
2

⌉

to d +
⌊

n
2

⌋

. The remaining jobs will also
be scheduled inside this range, since the algorithm will push its slots into the heap (note that
range

[

EC, d +
⌊

n
2

⌋]

is pushed on the heap).

In table 1 an example for Algorithm 1 is presented; assume d = 7. The jobs are already
renumbered in non decreasing order of rj . In step 2 the following ECj ’s are calculated:
EC1 = 1; EC2 = 3; EC3 = 4; EC4 = 6 and EC5 = 8. The due date is in this case non-
restrictive, since EC ≤ d +

⌊

n
2

⌋

(8 ≤ 7 + 2). In step 3 the range [8, 9] (cost: 2) is pushed on
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Table 1: Algorithm 1 example.

index 1 2 3 4 5
rj 0 2 2 5 7

the heap. In step 4 the jobs are scheduled in decreasing index order. Since EC5 ≥ d, job 5
is scheduled in the slot [7, 8] and range [6, 7] (cost: 0) is pushed on the heap. Job 4 is then
considered, and EC4 < d. If job 4 is scheduled to complete at EC4 = 6 its cost will be 1; if it
is scheduled in the best slot available on the heap, its cost is 0. Therefore, job 4 is scheduled
in the slot [6, 7] and range [4, 6] (cost: 1) is pushed on the heap. Job 3 is the next job to be
scheduled, and EC3 < d. If job 3 is scheduled to complete at EC4 = 4 its cost will be 3; if
it is scheduled in the best slot available on the heap (slot [5, 6]), its cost is 1. Job 3 is then
scheduled in the slot [5, 6], and both the updated range [4, 5] (cost:2) and the new range [3, 4]
(cost: 3) are inserted in the heap. The remaining jobs will then be scheduled in the slots [8, 9]
and [4, 5]. The algorithm schedules the jobs in the optimal range

[

d −
⌈

n
2

⌉

, d +
⌊

n
2

⌋]

, in this
case [4, 9].

3 Calculating the minimum non-restrictive common due date

for the general case 1 |dj = d, rj|
∑

|Cj − d|

With different release dates, the due date d will be non-restrictive when the optimal schedule
for the non-restrictive version of the problem with equal release dates is feasible, since clearly
no better schedule can be generated. Therefore, the minimum value of the common due date
d for which that schedule is feasible must be found. Throughout this section assume that the
jobs have been renumbered in non decreasing order of pj . An optimal schedule for the non-
restrictive version of the problem with equal release dates can be determined by the following
procedure presented by Kanet [5]. Let B be a sequence of jobs to be scheduled without
idle time such that the last job in B is completed at d. Let A be a sequence of jobs to be
scheduled without idle time such that the first job in A starts at d. An optimal schedule for the
problem with identical release dates consists of B followed by A, given that those sequences
are generated by the following rule: assign jobs alternately, and in their index order, to the
beginning of B and end of A, starting with B if n is odd and A otherwise. The minimum non-
restrictive common due date for the problem with equal release dates, which will be denoted
as ∆r=0, is then ∆r=0 =

∑

j∈B pj .

The minimum non-restrictive due date when different release dates are allowed will now be
considered. When all jobs share a common release date r, the smallest non-restrictive common
due date will simply be ∆r=0 + r. If jobs have different release dates as well as different
processing times, one can determine the start time of each job in the schedule generated
by Kanet’s procedure (assuming all release dates equal to zero) and calculate the maximum
violation of a release date (i.e., the maximum positive difference between a job’s release date
and its start time in the Kanet schedule). The minimum non-restrictive common due date
could then be obtained by adding that maximum violation to ∆r=0. When different jobs
have identical processing times, the situation is more complicated. Since processing times are
not unique, ties occur when renumbering the jobs in non decreasing order of pj , and several
different Kanet schedules may be generated, each leading to a possibly different maximum
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violation of a release date. Therefore, when renumbering jobs, ties must be broken in such
a way that the resulting Kanet schedule minimizes the maximum violation of a release date.
The following algorithm generates the minimum non-restrictive value of the common due date
d (denoted by ∆) when release dates are allowed to be different, and different jobs may have
identical processing times. If all release dates are identical, the algorithm is equivalent to
Kanet’s procedure. Let pA and pB denote, respectively, the sum of the processing times of the
jobs currently assigned to A and B. Jobs are added to the beginning of B and to the end of
A and the first job is to be assigned to B (A) if the number of jobs n is odd (even).

Algorithm 2

Step 1: Sort and renumber jobs in non decreasing order of pj ; break ties by choosing job
with lower rj .

Step 2: Set pA, pB and ∆ to 0.

Step 3: Consider jobs in increasing index order:

If pj is unique

If j is the first job to be assigned, assign j to B (A) if n is odd (even); otherwise
assign j to B (A) if last job was assigned to A (B).

If j is added to B

let ∆j = rj + pj + pB;

If ∆j > ∆, set ∆ = ∆j ;

pB = pB + pj ;

Else

let ∆j = rj − pA;

If ∆j > ∆, set ∆ = ∆j ;

pA = pA + pj ;

Else

let c be the number of jobs with that pj ;
⌈

c
2

⌉

jobs are assigned to A (B) and
⌊

c
2

⌋

to B (A) if last job was assigned to B (A);

the jobs assigned to B are those with lower rj , and are assigned in non increasing
order of rj ;

the jobs assigned to A are those with higher rj , and are assigned in non decreasing
order of rj ;

update ∆j , pA and pB as above.

The complexity of the algorithm is O (n log n), since Step 1 takes O (n log n) time, Step 2
takes constant time and Step 3 requires O (n) time.

Theorem 9 Algorithm 2 generates the minimum non-restrictive value for d.

Proof. The algorithm clearly generates a sequence that is optimal for the problem with equal
rj . Any d < ∆ leads to an infeasible schedule, since at least one job will not be available at its
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Table 2: Algorithm 2 example.

index 1 2 3 4 5
pj 5 7 7 8 10
rj 0 6 8 7 5

optimal start time. However, when several jobs have identical pj , several optimum sequences
exist for the problem with equal rj (those jobs will have to go into certain positions, but several
assignments are possible). When this happens, the algorithm assigns the jobs with lower rj to
the earlier slots. Therefore, it needs to be shown that any other assignment does not lead to a
lower ∆. Take any pair of jobs i and j such that ri < rj but j is scheduled before i. Assume
that j is in B and i is in A. When ∆ is being calculated, we have ∆1

j = rj + pj + pB and

∆1

i = ri − pA, and ∆1

j > ∆1

i . If those jobs were swapped, we would have ∆2

i = ri + pi + pB

and ∆2

j = rj − pA. Since ∆2

i < ∆1

j and ∆2

j < ∆1

j , the value of ∆ cannot be higher after the
swap. A similar reasoning applies when both jobs are in the same set. So swapping jobs until
they are in rj order will not increase ∆.

In table 2 an example for Algorithm 2 is presented. Jobs have already been renumbered
in non decreasing order of pj , with ties broken by lower rj . In step 3 the jobs are considered
in increasing index order. The first job’s pj is unique, and job 1 is assigned to B since n is
odd. The algorithm then calculates ∆1 = 0 + 5 + 0 = 5. Since ∆1 > ∆ = 0, the algorithm
sets ∆ = ∆1 = 5 and then updates pB = 5. Jobs 2 and 3 have identical processing times. Job
3 (with the higher rj) is then assigned to A, while job 2 (with the lower rj) is assigned to B.
The algorithm calculates ∆3 = 8 − 0 = 8, and sets ∆ = ∆3 = 8 and pA = 7. When job 2 is
assigned to B, ∆2 = 6 + 7 + 5 = 18. Since ∆2 > ∆ = 8, the algorithm sets ∆ = ∆2 = 18 and
then updates pB = 5+7 = 12. The processing time of job 4 is unique, and this job is assigned
to A. Since ∆4 = 7− 7 = 0, ∆ is not changed, while pA is updated to 15 (7+8). Finally, job 5
is assigned to B and ∆5 = 5 + 10 + 12 = 27. Therefore, ∆ is set at 27, which is the minimum
non-restrictive due date.
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