Controlled Attenuation Parameter as a Noninvasive Method to Detect and Quantify Hepatic Steatosis in Chronic Liver Disease: What Is the Clinical Relevance?

Mariana Verdelho Machado

Serviço de Gastrenterologia e Hepatologia, Hospital de Santa Maria, CHLN, Lisbon, Portugal

Keywords
Steatosis · Controlled attenuation parameter · Chronic hepatic disease

Ectopic accumulation of lipids in the liver, also known as hepatic steatosis, is a common finding [1]. It occurs in 90% of the heavy drinkers [2] and 20–30% of the non-drinkers [3], dubbed alcoholic and nonalcoholic fatty liver disease, respectively. Because of its growing prevalence in the general population, there is also a growing association of hepatic steatosis and other forms of chronic liver disease such as viral, autoimmune, and metabolic liver diseases [4].

The gold standard for the diagnosis and quantification of hepatic steatosis has been liver biopsy. However, liver biopsy has accuracy issues due to the nonhomogeneous distribution of liver steatosis throughout the liver that imposes important sample errors. In addition, it is an invasive procedure, with an unneglectable risk of complications [5]. As such, the search for noninvasive methods to diagnose and quantify liver steatosis has been a matter of intense research in the last decade. Magnetic resonance-derived techniques such as spectroscopy and measurement of proton density fat fraction are highly reliable methods, probably superior to liver histology, particularly proton density fat fraction, which allows quantification of hepatic steatosis throughout the liver [6]. However, those methods are expensive, time-consuming, and not widely available. Ultrasonography and tomography scan has similar accuracy, although the latter is more expensive and imposes exposure to radiation [7]. They have excellent accuracy for moderate-to-severe steatosis (85% sensitivity and 94% specificity). However, sensitivity decreases dramatically for steatosis <30% [8]. Ultrasonography allows subjective semiquantification of steatosis. Since recently, the elastography Fibroscan® probe can incorporate the measurement of the degree of ultrasound attenuation by hepatic fat, controlled attenuation parameter (CAP) allowing indirect quantification of liver ste-
Some authors even advocate that, in patients with NAFLD, CAP should always be considered in order to avoid overestimation of liver fibrosis [18].

Regarding chronic hepatitis C (CHC), the impact of hepatic steatosis on the prognosis and response to interferon treatment is complex and depends on the nature of hepatic steatosis, whether it is genotype 3 viral related or metabolism related [25]. With the advent of direct antiviral therapies, which are highly effective and have virtually universal indication in patients with CHC, liver steatosis is now a matter of lesser importance in CHC.

Lastly, it is important to determine the real relevance of the degree of liver steatosis in the prognosis/management of patients with NAFLD. Is there any interest in quantifying liver steatosis? The amount of liver steatosis does not seem to correlate with liver prognosis [26, 27], and there is no evidence of long-term benefits for the progression of liver disease in strategies that achieve improvement of liver steatosis [28]. However, there is accumulated circumstantial evidence that not only the presence of liver steatosis, but also the severity of steatosis correlates with adverse cardiovascular outcomes. Several epidemiological studies and meta-analyses showed that NAFLD associated with different markers of subclinical atherosclerosis (increase in carotid intima media thickness, impaired flow-mediated vasodilation, increased arterial stiffness or coronary artery calcification) [29], as well as with more than 50% increased risk for fatal and nonfatal cardiovascular events [30]. The increase in cardiovascular events was 250% in patients with severe steatosis [30, 31]. Furthermore, subclinical markers of atherosclerosis present a dose-response increase in preva-
lence according to steatosis grading by ultrasonography [32–37]. Finally, a small study reported a dose-dependent decrease in carotid intima media thickness, according to the decrease in the amount of steatosis, after a therapeutic intervention in patients with NAFLD [38]. That decrease was independent of weight loss.

In conclusion, CAP seems to be a reliable, easy method to detect and quantify liver steatosis. It should always be taken into consideration when performing hepatic elastography, since high CAP values may influence the measurement of elastography. It is not yet understood what the clinical relevance of detecting hepatic steatosis in non-NAFLD chronic liver diseases is. Regarding steatosis quantification, it does not seem to have an impact on liver prognosis, but it may influence cardiovascular prognosis, and long-term, noninvasive monitoring of hepatic steatosis quantification may have a clinical impact in the near future.

Statement of Ethics

This study did not require informed consent or review/approval by the appropriate ethics committee.

Disclosure Statement

The authors have no conflicts of interest to declare.

References

3 Younossi Z, Henry L: Contribution of alcoholic and nonalcoholic fatty liver disease to global burden of liver-related morbidity and mortality. Gastroenterology 2016;150:1778–1785.
28 Machado MV, Cortez-Pinto H: Non-alcoholic fatty liver disease: what the clinician needs to know. World J Gastroenterol 2014;20:12956–12980.
37 Sapmaz F, Uzman M, Basyigit S, Ozkan S, Yavuz B, Yeniova A, et al: Steatosis grade is the most important risk factor for development of endothelial dysfunction in NAFLD. Medicine (Baltimore) 2016;95:e3280.