ESTUDO MICROESTRUTURAL E ELETROQUÍMICO DE
LIGAS Ni-Cr-Mo USADAS EM PRÓTESES DENTÁRIAS
DEPOIS DE DIFERENTES PROCESSOS DE REFUNDIÇÃO

LUCIOLA LUCENA DE SOUSA (¹), HAMILTON DE FELIPE (²), EDUARDO NORBERTO CODARO (³)
E ROBERTO ZENNEI NAKAZATO (⁴)

Resumo
Ligas Ni-Cr-Mo são amplamente utilizadas como próteses dentárias fixas, sendo utilizados diferentes procedimentos de refundição que podem alterar as propriedades mecânicas e resistência à corrosão. O objetivo desse trabalho foi analisar o comportamento eletroquímico, as microestruturas e a dureza de duas ligas refundidas pelo processo de refundição em chama (macaco-oxi-GLP) e por indução em forno de alta frequência. A análise metalográfica revelou estruturas dendríticas com grãos largos e precipitados nos seus contornos. As ligas refundidas por indução apresentam menor resistência à corrosão em soro fisiológico, a 37°C e maiores valores de dureza.

Palavras-Chave: Corrosão, Liga Dentária, Níquel-Cromo-Molibdênio

ELECTROCHEMICAL AND MICROSTRUCTURAL STUDY OF
Ni-Cr-Mo ALLOYS USED IN DENTAL PROSTHESIS
AFTER DIFFERENT REMELTING PROCESSES

Abstract
Ni-Cr-Mo alloys are widely used as fixed dental prostheses, and different procedures for remelting are used which can change the mechanical properties and corrosion resistance. The main aim of this study was to analyze the electrochemical behavior, microstructures and hardness of two remelted alloys by the open flame process (oxy-GLP torch) and by induction in high frequency furnace. Metallography analysis showed dendritic structures with large grains and precipitates in their contours. Alloys recast by induction displayed a lower corrosion resistance in physiologic serum, at 37°C and higher hardness values.

Keywords: Corrosion, Dental Alloy, Nickel-Chrome-Molybdenum

1. INTRODUÇÃO

As ligas de metais não-nobres (básicos) para restaurações odontológicas foram introduzidas nos anos 30. Ligas não-nobres são ligas que contêm em sua composição metais ativos, isto é, metais que têm tendência a se oxidar, tornando a um composto instável como o encontrado na natureza na forma de um minério. Desde essa época, as formulações de Ni-Cr têm-se tornado cada vez mais populares, comparadas com as ligas de metais nobres. As vantagens em se utilizar estas ligas são seus pesos mais leves, suas propriedades mecânicas e seus custos reduzidos. As ligas à base de niquel-cromo e cobalto-cromo, chamadas de ligas ativas, começaram a se difundir devido ao alto custo das ligas de ouro e a partir de então foram feitas várias questionamentos com respeito estas propriedades físicas e mecânicas destas ligas [1]. Esta motivação deve-se principalmente às características que apresentam, tais como: módulo de elasticidade superior, menor densidade, maior resistência, menor flexibilidade, alongamento satisfatório e custo reduzido. Suas características de expansão se assemelham com as liga atuais e a formação de óxidos possibilita uma adesão adequada à porcelana. Estas ligas

² Grupo de Corrosão e Eletroquímica – Universidade Estadual Paulista Júlio de Mesquita Filho, Av. Dr. Arlindo Pereira da Cunha, 333 Guaratinguetá-SP – CEP 12.316-410, Brasil
³ A quem a correspondência deve ser dirigida, e-mail: luciolalucena@yahoo.com.br
alternativas devem apresentar, dentre outras características, propriedades físicas e mecânicas adequadas a qualquer tipo de trabalho restaurador [2].

Ligas de Ni-Cr para coroas e próteses parciais fixas contêm de 60% a 80% (m/m) Ni, 16% a 27% Cr e 4% a 10% Mo.

Outros elementos podem ser adicionados em pequenas quantidades para alterar suas propriedades mecânicas, tais como: dureza e módulo de elasticidade. Estas ligas precisam exibir bio-compatibilidade, facilidade de fusão, fundição, soldagem, polimento, pouco contração de solidificação, mínima reatividade com o material de revestimento, boa resistência ao desgaste e excelente resistência ao manchamento e à corrosão [3].

A resistência ao manchamento e à corrosão das ligas de Ni é grande interesse devido ao potencial alergênico do níquel e seus compostos [4,5].

Processos corrosivos liberam iones metálicos que entram em contato com células e tecidos. Se esses iones não são bio-compatíveis e se a quantidade absurda é alta o organismo pode ser prejudicado. Estas ligas são resistentes à corrosão devido ao fenômeno de passivação, com a formação de oxido estáveis na superfície, como por exemplo, o CrO2 [6, 7, 8]. Oxicristal de Ni, Cr, Mo, Nb e de outros elementos podem ser formados na superfície sob ação do oxigênio atmosférico após o polimento. A compação e a espessura da camada de oxido são afetadas após reações, podendo gerar imperfeições e ocorrer corrosão localizada principalmente em metais salinos. Além disso, em presença de outros ligas mais nobres pode ocorrer a corrosão galvanônica [9, 10].

Rozich et al. (1998) concluíram que a ligação de Ni-Cr-Mo contém o mínimo de (16,22%) Cr e (9,14%) Mo podem formar uma camada de óxido passiva que promove resistência ao processo de corrosão [11].

Schmaltz e Gerdhammer (2002) relembram que a corrosão das ligas odontológicas têm como resultado a liberação de íons metálicos que podem causar efeitos biológicos locais. A corrosão na boca é um processo eletroquímico natural e espontâneo. A completa formação do filme passivo nas superfícies dos metais / ligas pode tornar a corrosão grandemente inibida, pelo formação de uma camada de óxidos na superfície [12].

O conhecimento da temperatura de fusão dos metais e ligas é de grande importância no momento de sua indicação, para que se obtenha sucesso nos trabalhos realizados com esses materiais. As ligas não nobres possuem temperatura de fusão muito alta (cerca de 1400 °C) e portanto, apresentam maior contração de solidificação que as ligas de ouro, além disso, aquelas que possuem zona de fusão muito ampla são mais favoráveis à corrosão. As ligas para restauração metalocerâmica devem ter uma zona de solidificação em temperaturas elevadas, de modo que o metal permaneça sólido bem acima da temperatura de coqueação da porcelana, para obter menor distorção marginal das infraestruturas metálicas [13].

Fusão e refluência das ligas ainda representam os procedimentos laboratoriais mais amplamente usados para a fabricação de restaurações odontológicas [14, 15]. Como esses procedimentos são realizados com pouco ou nenhum controle atmosférico e de temperatura, ocorrem alterações na microestrutura sendo necessários estudos mais aprofundados dos processos de refluência. Propomos nosso trabalho comparar o comportamento eletroquímico e a microestrutura de duas ligas Ni-Cr-Mo utilizadas em próteses dentárias fixas. O estudo é realizado in vitro em meio de NaCl 0,9 % em massa, pH 6 a 37 °C simulando a agressividade do meio bucal.

2. METODOLOGIAS

Foram utilizadas duas ligas de Ni-Cr-Mo com composições de 65,0% Ni, 22,5% Cr, 9,5% Mo (Wiron 99) e 59,6% Ni, 24,0% Cr, 9,8% Mo (Wironia) que são comercializadas na condição bruta de fusão. Foram ainda utilizados tarugos de metais Cromo, Níquel e Molibdênio comercialmente puros para efeito comparativo na resis-

tência à corrosão. Para confecção dos corpos-de-prova foram utilizados cilindros de cera de aproximadamente 0,5 cm² de área na seção transversal por 3 cm de comprimento, que foram revestidos com fosfato, sendo aquecido para eliminar a cera, gerando um molde. As ligas, neste trabalho, na condição bruta de fusão foram revestidas pelo método de cera perdida com dois procedimentos:

- Chama aberta (maçarico oxí-GLP) sem controle da vazão do gás e da temperatura. A chama foi Incidida sobre o metal, e após a formação de uma gema, o molde foi retirado do forno, colocado perto do cadi-rinho e por centrifugação o metal fundido penetra no molde. O cor-

po-de-prova obtido por este procedimento será denominado Maçarico.

- Indução em forno de alta frequência (Forno de indução MANIFREDI ALY). Neste tipo de máquina o metal foi fundido pelo campo de indução que se desenvolveu no interior do cadi-rinho, a 1500 °C. Em seguida, o molde aquecido foi colocado no forno da indução próxima ao cadi-rinho e o preenchido pelo metal líquido, por cen-

trifugação. O corpo de prova obtido por este procedimento será denominado Indução.

Em ambos os procedimentos os mol-\ndes foram restritos naturalmente sem controle atmosférico. As amostras foram removidas do molde e usinados no for-

ma de cilindros e nesta condição utilizados para os respectivos análises.

Na análise microestrutural as amostras foram fixadas com líxas 220 a 1500 mesh, polidas num pano de polimento com pasta de diamante de 3 μm, submetidas a um ataque eletroquímico em solução de 20% HCl e fotografadas em Microscópio Eletrônico de Varredura (MEV) LEO 1450VP, munido de um analisador por separação de energia dispersiva de raios-X, que permite a análise elementar localizada qualitativa e semi-quantitativa.
Para a confecção dos eletrodos de trabalho, as ligas Ni-Cr como recebidas e refundidas foram embutidas em resina poliéster deixando uma área exposta de 0,5 cm². A superfície foi lixada com lixa de 220 a 1200 mesh que permitiu boa reprodutibilidade das medidas eletroquímicas. Os ensaios eletroquímicos foram realizados utilizando as técnicas de voltametria cíclica e polarização potenciocinética. Para este propósito utilizou-se uma célula termoestatizada de vidro, um eletrodo de referência de calomelano (SCE) adaptado a um capilar de Luggin e um contra eletrodo de platina. Como eletrólito utilizou-se solução de NaCl 0,9 % (m/m), ajustada a pH 6,0 a 37 °C. O pH da solução foi ajustado pela adição gora a gota de ácido clo-trídrico ou hidróxido de sódio, com o auxílio de um agitador magnético, empregando-se um pHmetro com eletrodo de vidro combinado. O equipamento usado foi um Potenciostato EG&G PAR 203 interfeccionado a um microcomputador GS – Pentium II através de uma interface CP1B munido dos programas Softcorr III e Power Suite para o controle e processamento dos dados.

As medidas de dureza Vickers foram obtidas em um durotomo, marca Wolpert, com uma carga aplicada de 10 kgf num tempo de 15 s, seguindo a norma (ASTM E 92, 1982) [16]. Foram feitas 10 medidas em cada corpo de prova, em diversas regiões do amostra, tomando-se uma média que representasse, estatisticamente, o valor da dureza.

3. RESULTADOS E DISCUSSÃO

3.1. Ensaios eletroquímicos

A voltametria cíclica constitui um dos métodos mais adequados para a obtenção de informações sobre a reversibilidade de um sistema, seus potenciais formais, ocorrência ou não de reações acopladas aos processos de transferência de elétrons, bem como sobre a carga elétrica envolvida no processo e a reprodutibilidade da superfície. Na voltametria cíclica efetuou-se uma varredura no intervalo de -1,0 V a 0,8 V com uma velocidade de 33,3 mV/s e para a curva de polarização em uma faixa de potencial de -1,0 V a 1,0 V com uma velocidade de varredura de 0,333 mV/s. Os ensaios potenciocinéticos foram realizados iniciando-se a varredura em -1,0 V, na região de desprendimento de hidrogênio. Em seguida, procedeu-se a varredura no sentido de potenciais positivos. A inversão da varredura foi feita em 0,8 V, na região de dissolução do material.

As Figuras 1 e 2 mostram, respectivamente, os voltamogramas cíclicos para as ligas Wiron 99 e Wironia bruta de fusão e submetidas a diferentes procedimentos de refundição. Em todos os casos observa-se uma ampla região de estabilidade entre (0,6 e 0,8) V.

A liga Wiron 99, Figura 1, obtida por refundição, revela um aumento na densidade de corrente na região passiva comparado ao processo de refundição em chama aberta (maçarico). A liga Wiron 99 bruta de fusão apresenta um pico largo de corrente anódica cujo máximo se localiza em aproximadamente 0,3 V. Esse pico, por comparação com a Figura 3, que apresenta os resultados obtidos com metais puros utilizados como referência, foi atribuído a oxidação principalmente do niquel, presente em maior concentração na liga. Em todos os outros casos observa-se uma ampla região de estabilidade entre aproximadamente (0,3 e 0,5) V.

O efeito da refundição para a Wironia, Figura 2, é análogo ao observado para...
a Wiron 99. A principal diferença, no entanto, é que a liga bruta de fusão tem comportamento idêntico à liga tratada em chama aberta, sem mostrar a presença de picos de corrente de oxidação. As liga Indução revelam uma densidade de corrente cerca de três vezes maior do que a observada para as outras liga, o que indica um filme superficial menos resistivo.

Por meio das curvas de polarização, por se estabelecer uma relação entre o tipo de ataque corrosivo que sofre o material e sua resistência à corrosão. As curvas de polarização para as liga Ni-Cr brutas de fusão e maçarico em NaCl 0,9 % (m/m) mostradas nas Figuras 4 e 5 apresentaram uma região catódica, onde em pH 6,0 pode ocorrer a redução de íons H+ e/ou de oxigênio.

Na região anódica observou-se uma extensa região de passivação (~1 V) que vai desde -0,3 V até aproximadamente +0,7 V. Para potenciais superiores (~0,7 V), houve um acréscimo progressivo da densidade de corrente, devido à dissolução dos componentes da liga, fenômeno conhecido como transpassivação. Este comportamento é semelhante ao obtido com o Cromo, porém a densidade de corrente para o metal na região de passividade é menos elevada como visto na Figura 6. Nesta região de potenciais, as liga refundidas por Indução apresentam um lento aumento na densidade de corrente em um amplo intervalo de potencial (~1,0 V), que pode ser interpretado como uma aparente passivação e posteriormente ocorre a transpassividade. Essa diferença de comportamento pode estar associada à maior heterogeneidade na estrutura que dificulta a formação de um filme protetor. Nas curvas de Ni e Cr e Mo, Figura 6, não se observa uma passivação, o processo é controlado catódico principalmente pela velocidade de redução de oxigênio e a velocidade de corrosão é aproximadamente 100 vezes maior do que o Cromo.

A passivação das liga de Ni-Cr-Mo é frequentemente atribuída à formação de uma fina e compacta camada de óxido de cromo (Cr₂O₃). Huang [17, 18] determinou que esta camada é constituída de óxidos e hidróxidos.
Esta película é autolimitante porque age como barreira para o transporte de oxigênio e íons metálicos. A estabilidade dessa película dependerá da sua solubilidade à temperatura de trabalho.

A Tabela 1 apresenta os parâmetros, densidade de corrente de passivação (j_{pass}), intervalo de passivação (E_{ruptura}) e potencial de ruptura (E_{ruptura}), obtidos das curvas de polarização potenciodinâmica das ligas Wiron 99 e Wironia refundidas por diferentes processos e do Cr.

3.2. Análise metalográfica

A análise da superfície das liga Bruta de Fusão, após revelação por ataque eletroquímico, com uma ampliação de 500x, evidencia uma estrutura constituída por uma matriz de solução sólida em disposição dendrítrica (fase primária) e uma fase interdendrítrica (secundária) regularmente distribuída como mostrada nas Figuras 7 e 8. Nas amostras refundidas, Figuras 10 e 12 para a amostra Wiron 99 e Figuras 9 e 11 para o Wironia são observadas duas fases: principal (solução sólida de Ni-Cr-Mo) e precipitados ricos em Mo. A Wiron 99 apresenta menor concentração de precipitado. Esses precipitados são constituídos provavelmente de carbetos de Cr e Mo, principalmente de Mo. A Wiron 99 Macarrão, Figura 12, ainda mantém caráter dendrítrico, possui poros que pode ter sido adquirido na refun- dição, os precipitados são menores. A Wiron 99 Indução, Figura 10, possui alguns precipitados pequenos enquanto no Wironia Indução, Figura 9, percebe-se uma maior quantidade de precipitados e quantidade aproximadamente igual de precipitados que a Wironia Mo-Mo, Figura 11.

As liga Wironia Mo-Mo e Indução apresentam precipitados maiores que a Wiron 99 e nessa liga percebe-se que não há a presença de muitos poros na amostra como visto na Wiron 99 Macarrão. A estrutura bruta de fusão é predominantemente dendrítrica e sabese que nesta estrutura, as dendritas têm concentração dos metais presentes, diferentes da concentração dos metais nos espaços interdendrítricos. Isto ocorre devido ao processo de solidificação, onde as dendritas solubilizam-se primeiro e, como consequência, apresentam resistência ao ataque eletroquímico e químico diferentes [19]. No processo de resfriamento e solidificação é que a microestrutura das liga é definida [14]. Nesse processo, a precipitação de fases secundárias resulta na saturação da matriz que separa os elementos ligantes. Como resultado, formam uma nova fase [1]. A fase principal, também conhecida como homogênea, é constituída de uma solução sólida de Ni-Cr-Mo que ainda mantém um caráter estrutural dendrítrico e a segunda fase são precipitados eutéticos lamelares nos contornos de grãos [20]. Baran (1983) [14] trabalhou com a liga Wiron 77 e Huang [17] trabalhou com a liga Wiron 99 e obtiveram resultados parecidos. Para diversos autores que analisaram ligas com composições próximas às destes trabalhos, a segunda fase seriam aglomeradas, provavelmente constituídas por carbetos de Cr e Mo [21].

A formação de carbetos metálicos se dá durante a solidificação da liga fundida [1]. A facilidade de reação do carbono com outros elementos metálicos resulta na formação de uma variedade de carbetos do tipo M_7C_3, M_6C e M_23C_6, sendo M representado por vários elementos metálicos [1, 14, 20, 22].

A diferença principal de comportamento entre a Wironia e a Wiron 99 pode estar relacionado ao fato da Wiron 99 apresentar uma quantidade muito baixa de carbono (<0.02 % C) e a presença de Nb (1.0 % Nb), que tem uma afinidade maior ao carbono levando à formação do carbeta de Nb, enquanto o Cr é mantido na solução para

Tabela 1 - Parâmetros obtidos das curvas de polarização potenciodinâmica das ligas Ni-Cr-Mo.

<table>
<thead>
<tr>
<th>Ligas</th>
<th>j_{pass} (μA cm$^{-2}$)</th>
<th>E_{ruptura} (V)</th>
<th>E_{ruptura} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiron 99 Bruta de Fusão</td>
<td>2.3</td>
<td>0.88</td>
<td>0.60</td>
</tr>
<tr>
<td>Wiron 99 Macarrão</td>
<td>2.3</td>
<td>0.86</td>
<td>0.60</td>
</tr>
<tr>
<td>Wiron 99 Indução</td>
<td>0.7-0.8</td>
<td>1.12</td>
<td>0.70</td>
</tr>
<tr>
<td>Wironia Bruta de Fusão</td>
<td>1.2</td>
<td>0.90</td>
<td>0.60</td>
</tr>
<tr>
<td>Wironia Macarrão</td>
<td>1.2</td>
<td>0.84</td>
<td>0.60</td>
</tr>
<tr>
<td>Wironia Indução</td>
<td>1.2</td>
<td>0.92</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Fig. 6 - Curva de Polarização dos metais puros em NaCl 0,9 %, pH 6,0.
manter a resistência à corrosão. O carbono (C) é o elemento mais crítico, pois pequenas variações têm um efeito pronunciado na resistência mecânica, dureza e ducibilidade. A afinidade deste, por vários elementos que compõem a liga de Ni-Cr, facilita a formação de inúmeros carbetos metálicos. A precipitação destes carbetos é um fator de importância na resistência de uma liga, porém, se houver excesso uma indesejável friabilidade pode ocorrer. Os carbetos segundo Liu *et al.*, em 2003, são ainda responsáveis pela melhoria da resistência ao “creep” [23]. Parece claro que o aumento da concentração de carbono tem uma influência na diminuição da resistência à corrosão, já que o carbono tem a característica de formar compostos com elementos formadores na película passivadora [24]. O nióbio (Nb) apresenta uma grande tendência à formação de óxidos com excelente resistência à cor-
rosão. O óxido de nióbio é fortemente aderido ao substrato metálico o que contribui para uma melhor adesão à porcelana [25]. O Nb ainda tem a possibilidade de formar um composto eutético com o niqel que poderia auxiliar na fluididade da liga. A ordem de estabilidade de óxidos em termos de energia livre é: NIO<MnO<Cr2O3<NiO<NbO2<NbO3<SiO2 e a estabilidade de carbetos por molécula de carbono: NbC<SiC<Cr2C<CrC2 sendo possível a formação de uma mistura de compostos.

3.3. Ensaios de dureza
Valores de dureza Vickers são comumente fornecidos pelos fabricantes de ligas dentárias como um parâmetro útil na qualificação do material. Foram realizadas medidas de dureza, pois esta propriedade está correlacionada com a confecção do prótese (maior dureza permite a confecção de próteses mais compridas). Medidas de dureza Vickers são mostradas na Tabela 2. Os valores apresentam a média de 10 medidas. As liga bruta de fusão e as ligas refutadas por indução apresentam uma dureza maior do que a refutada por Maçarico.

4. CONCLUSÕES

- Diferentes processos de refunção alteram a microestrutura, o comportamento eletroquímico e a dureza das liga Wiron 99 e Wironia.
- A microestrutura das liga refutada apresenta caráter parcialmente dendrítico com o aparecimento de aglomerados provavelmente constituídos por carbetos de Cr e Mo. O número destes precipitados nas amostras refutadas por indução é maior indicando maior heterogeneidade.
- Ligas refutadas por indução apresentam menor resistência à corrosão em soluções fisiológicas, a 37°C, evidenciadas por não se passarem nesse meio e por apresentarem alta densidade de carga, indicando a formação de filme protetor superficial menos resistivo.
- Refunção das ligas diminuem os valores de dureza Vickers, sendo o abaixamento mais pronunciado para a refunção com Maçarico.

<table>
<thead>
<tr>
<th>Referências</th>
</tr>
</thead>
</table>